Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited
In this paper, we confirm the conjecture of Wang and Zhang (J Stat Phys 134 (5-6):953–968, 2009) in a long time scale, i.e., the displacement of the wavefront for 1 D nonlinear random Schrödinger equation is of logarithmic order in time | t |.
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2021, Vol.182 (1), Article 10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 182 |
creator | Cong, Hongzi Shi, Yunfeng Zhang, Zhifei |
description | In this paper, we confirm the conjecture of Wang and Zhang (J Stat Phys 134 (5-6):953–968, 2009) in a long time scale, i.e., the displacement of the wavefront for 1
D
nonlinear random Schrödinger equation is of logarithmic order in time |
t
|. |
doi_str_mv | 10.1007/s10955-020-02677-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476156987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476156987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d6ab359a57deaadb4129e158deebf43d3e91c4e16f2826afc32c01a3d45575073</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4GnBczQfm83mWEr9gEVR6zmkyWyb0m7aZCvUB_MFfDG3ruDNwzAM_P4zzA-hS0quKSHyJlGihMCEka4KKfH-CA2okAyrgvJjNCCEMZxLKk7RWUpLQogqlRig5yo0czz1a8hGjYOYQpNVwZqV_zCt74Y6xKxdQPYYmpVvwMTs1S7i16fzzRxiNtnueu4F3n3yLbhzdFKbVYKL3z5Eb7eT6fgeV093D-NRhS2nqsWuMDMulBHSgTFullOmgIrSAczqnDsOitocaFGzkhWmtpxZQg13uRBSEMmH6Krfu4lhu4PU6mXYxaY7qVkuCyoKVR4o1lM2hpQi1HoT_drEvaZEH9TpXp3u1OkfdXrfhXgfSh18ePNv9T-pb0adc3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476156987</pqid></control><display><type>article</type><title>Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cong, Hongzi ; Shi, Yunfeng ; Zhang, Zhifei</creator><creatorcontrib>Cong, Hongzi ; Shi, Yunfeng ; Zhang, Zhifei</creatorcontrib><description>In this paper, we confirm the conjecture of Wang and Zhang (J Stat Phys 134 (5-6):953–968, 2009) in a long time scale, i.e., the displacement of the wavefront for 1
D
nonlinear random Schrödinger equation is of logarithmic order in time |
t
|.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02677-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anderson localization ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Schrodinger equation ; Statistical Physics and Dynamical Systems ; Theoretical ; Wave fronts</subject><ispartof>Journal of statistical physics, 2021, Vol.182 (1), Article 10</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d6ab359a57deaadb4129e158deebf43d3e91c4e16f2826afc32c01a3d45575073</citedby><cites>FETCH-LOGICAL-c319t-d6ab359a57deaadb4129e158deebf43d3e91c4e16f2826afc32c01a3d45575073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02677-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02677-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cong, Hongzi</creatorcontrib><creatorcontrib>Shi, Yunfeng</creatorcontrib><creatorcontrib>Zhang, Zhifei</creatorcontrib><title>Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper, we confirm the conjecture of Wang and Zhang (J Stat Phys 134 (5-6):953–968, 2009) in a long time scale, i.e., the displacement of the wavefront for 1
D
nonlinear random Schrödinger equation is of logarithmic order in time |
t
|.</description><subject>Anderson localization</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Schrodinger equation</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Wave fronts</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsv4GnBczQfm83mWEr9gEVR6zmkyWyb0m7aZCvUB_MFfDG3ruDNwzAM_P4zzA-hS0quKSHyJlGihMCEka4KKfH-CA2okAyrgvJjNCCEMZxLKk7RWUpLQogqlRig5yo0czz1a8hGjYOYQpNVwZqV_zCt74Y6xKxdQPYYmpVvwMTs1S7i16fzzRxiNtnueu4F3n3yLbhzdFKbVYKL3z5Eb7eT6fgeV093D-NRhS2nqsWuMDMulBHSgTFullOmgIrSAczqnDsOitocaFGzkhWmtpxZQg13uRBSEMmH6Krfu4lhu4PU6mXYxaY7qVkuCyoKVR4o1lM2hpQi1HoT_drEvaZEH9TpXp3u1OkfdXrfhXgfSh18ePNv9T-pb0adc3E</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cong, Hongzi</creator><creator>Shi, Yunfeng</creator><creator>Zhang, Zhifei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited</title><author>Cong, Hongzi ; Shi, Yunfeng ; Zhang, Zhifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d6ab359a57deaadb4129e158deebf43d3e91c4e16f2826afc32c01a3d45575073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anderson localization</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Schrodinger equation</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Hongzi</creatorcontrib><creatorcontrib>Shi, Yunfeng</creatorcontrib><creatorcontrib>Zhang, Zhifei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Hongzi</au><au>Shi, Yunfeng</au><au>Zhang, Zhifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021</date><risdate>2021</risdate><volume>182</volume><issue>1</issue><artnum>10</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper, we confirm the conjecture of Wang and Zhang (J Stat Phys 134 (5-6):953–968, 2009) in a long time scale, i.e., the displacement of the wavefront for 1
D
nonlinear random Schrödinger equation is of logarithmic order in time |
t
|.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02677-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2021, Vol.182 (1), Article 10 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2476156987 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anderson localization Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Schrodinger equation Statistical Physics and Dynamical Systems Theoretical Wave fronts |
title | Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Time%20Anderson%20Localization%20for%20the%20Nonlinear%20Schr%C3%B6dinger%20Equation%20Revisited&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Cong,%20Hongzi&rft.date=2021&rft.volume=182&rft.issue=1&rft.artnum=10&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02677-y&rft_dat=%3Cproquest_cross%3E2476156987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476156987&rft_id=info:pmid/&rfr_iscdi=true |