The Globalization Problem of the Hamilton–DeDonder–Weyl Equations on a Local k-Symplectic Framework

In this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local k -symplectic framework and we introduce the notion of locally conformal k-symplectic (l.c.k-s.) manifolds . This formalism describes the dynamical properties of physical systems that locally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2021-02, Vol.18 (1), Article 26
Hauptverfasser: Esen, Oğul, de León, Manuel, Sardón, Cristina, Zając, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local k -symplectic framework and we introduce the notion of locally conformal k-symplectic (l.c.k-s.) manifolds . This formalism describes the dynamical properties of physical systems that locally behave like multi-Hamiltonian systems. Here, we describe the local Hamiltonian properties of such systems, but we also provide a global outlook by introducing the global Lee one-form approach. In particular, the dynamics will be depicted with the aid of the Hamilton–Jacobi equation, which is specifically proposed in a l.c.k-s manifold.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-020-01685-2