The Globalization Problem of the Hamilton–DeDonder–Weyl Equations on a Local k-Symplectic Framework
In this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local k -symplectic framework and we introduce the notion of locally conformal k-symplectic (l.c.k-s.) manifolds . This formalism describes the dynamical properties of physical systems that locally...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2021-02, Vol.18 (1), Article 26 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local
k
-symplectic framework and we introduce the notion of
locally conformal k-symplectic (l.c.k-s.) manifolds
. This formalism describes the dynamical properties of physical systems that locally behave like multi-Hamiltonian systems. Here, we describe the local Hamiltonian properties of such systems, but we also provide a global outlook by introducing the global Lee one-form approach. In particular, the dynamics will be depicted with the aid of the Hamilton–Jacobi equation, which is specifically proposed in a l.c.k-s manifold. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-020-01685-2 |