Exploring the Regulatory Function of the N-terminal Domain of SARS-CoV-2 Spike Protein Through Molecular Dynamics Simulation

SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simulation on the S protein with a focus on the function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Yao, Li, Wang, Tong, Zhang, Juanrong, Shao, Bin, Gong, Haipeng, Wang, Yusong, Liu, Siyuan, Tie-Yan, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simulation on the S protein with a focus on the function of its N-terminal domains (NTDs). Our study reveals that the NTD acts as a "wedge" and plays a crucial regulatory role in the conformational changes of the S protein. The complete RBD structural transition is allowed only when the neighboring NTD that typically prohibits the RBD's movements as a wedge detaches and swings away. Based on this NTD "wedge" model, we propose that the NTD-RBD interface should be a potential drug target.
ISSN:2331-8422