Two‐dimensional Fe2O3/TiO2 Composite Nanoplates with Improved Lithium Storage Properties as Anodic Materials for Lithium‐Ion Full Cells

The rapid capacity decay is one of the challenges for the anodes of metal oxides‐based lithium‐ion batteries (LIBs). Herein, we report a characteristic nanoplate‐structured metal oxide anode consisting of hexagonal Fe2O3 and TiO2 (denoted as Fe2O3/TiO2) via a facile hydrothermal strategy. Owing to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2020-12, Vol.7 (24), p.4963-4970
Hauptverfasser: Qu, Dongyang, Sun, Zhonghui, Gan, Shiyu, Gao, Lifang, Song, Zhongqian, Kong, Huijun, Xu, Jianan, Dong, Xiandui, Niu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid capacity decay is one of the challenges for the anodes of metal oxides‐based lithium‐ion batteries (LIBs). Herein, we report a characteristic nanoplate‐structured metal oxide anode consisting of hexagonal Fe2O3 and TiO2 (denoted as Fe2O3/TiO2) via a facile hydrothermal strategy. Owing to two‐dimensional (2D) structured and stable TiO2 modifier, Fe2O3/TiO2 composite demonstrates significantly improved electrochemical LIBs performances. The Fe2O3/TiO2 composite material buffers the volume expansion of Fe2O3 and improves the rate capability and cycling performances. Upon 1000 long‐term cycles, the anode electrode delivers high discharge capacity of 1056 mAh g−1 at 0.5 A g−1. The full cell that is composed of Fe2O3/TiO2 as the anode and commercial LiFePO4 as the cathode delivers superior rate capacity (84 mAh g−1 at 2 A g−1) and stable cycle capacity (132 mAh g−1 at 0.1 A g−1 after 150 cycles). This 2D composite nanostructure offers an approach to improve the metal oxide‐based anodes of LIBs. The 2D structured Fe2O3/TiO2 composite nanoplates offers open channels for favorable ion and electron transports. The combination of TiO2 with a steady structure further provides sufficient volume fluctuation space for Fe2O3. Fe2O3/TiO2 nanoplates as an anode material thus exhibit favorable rate and cycle performances for lithium‐ion batteries compared with Fe2O3. After assembled with LiFePO4 cathode, the full cell also demonstrates stable cycle capacity (132 mAh g−1 at 0.1 A g−1 after 150 cycles).
ISSN:2196-0216
2196-0216
DOI:10.1002/celc.202001143