Specializing Trees with Small Approximations I
Assuming \(\rm PFA\), we shall use internally club \(\omega_1\)-guessing models as side conditions to show that for every tree \(T\) of height \(\omega_2\) without cofinal branches, there is a proper and \(\aleph_2\)-preserving forcing notion with finite conditions which specialises \(T\). Moreover,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assuming \(\rm PFA\), we shall use internally club \(\omega_1\)-guessing models as side conditions to show that for every tree \(T\) of height \(\omega_2\) without cofinal branches, there is a proper and \(\aleph_2\)-preserving forcing notion with finite conditions which specialises \(T\). Moreover, the forcing has the \(\omega_1\)-approximation property. |
---|---|
ISSN: | 2331-8422 |