Molecular Decomposition of Anisotropic Hardy Spaces With Variable Exponents
Let A be an expansive dilation on ℝ n , and p (·): ℝ n → (0, ∞) be a variable exponent function satisfying the globally log-Holder continuous condition. Let H A p ( ⋅ ) ( ℝ n ) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the authors e...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2020-12, Vol.51 (4), p.1471-1495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be an expansive dilation on ℝ
n
, and
p
(·): ℝ
n
→ (0, ∞) be a variable exponent function satisfying the globally log-Holder continuous condition. Let
H
A
p
(
⋅
)
(
ℝ
n
)
be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the authors establish its molecular decomposition, which is still new even in the classical isotropic setting (in the case
A
:= 2I
n×n
). As applications, the authors obtain the boundedness of anisotropic Calderon-Zygmund operators from
H
A
p
(
⋅
)
(
ℝ
n
)
to
L
p
(·)
(ℝ
n
) or from
H
A
p
(
⋅
)
(
ℝ
n
)
to itself. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-020-0477-6 |