Molecular Decomposition of Anisotropic Hardy Spaces With Variable Exponents

Let A be an expansive dilation on ℝ n , and p (·): ℝ n → (0, ∞) be a variable exponent function satisfying the globally log-Holder continuous condition. Let H A p ( ⋅ ) ( ℝ n ) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the authors e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2020-12, Vol.51 (4), p.1471-1495
Hauptverfasser: Wang, Wenhua, Liu, Xiong, Wang, Aiting, Li, Baode
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be an expansive dilation on ℝ n , and p (·): ℝ n → (0, ∞) be a variable exponent function satisfying the globally log-Holder continuous condition. Let H A p ( ⋅ ) ( ℝ n ) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the authors establish its molecular decomposition, which is still new even in the classical isotropic setting (in the case A := 2I n×n ). As applications, the authors obtain the boundedness of anisotropic Calderon-Zygmund operators from H A p ( ⋅ ) ( ℝ n ) to L p (·) (ℝ n ) or from H A p ( ⋅ ) ( ℝ n ) to itself.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-020-0477-6