The localization number of designs

We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2021-03, Vol.29 (3), p.175-192
Hauptverfasser: Bonato, Anthony, Huggan, Melissa A., Marbach, Trent G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 3
container_start_page 175
container_title Journal of combinatorial designs
container_volume 29
creator Bonato, Anthony
Huggan, Melissa A.
Marbach, Trent G.
description We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure the robber's capture. We present bounds on the localization number of incidence graphs of balanced incomplete block designs. Exact values of the localization number are given for the incidence graphs of projective and affine planes. Bounds are given for Steiner systems and for transversal designs.
doi_str_mv 10.1002/jcd.21762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475288026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475288026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-4d9343c041afcc60481783f60d4f48de3d1861bc836834b4d61da68e07de5e493</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUw8A8imBjSXj_i2CMK5aVKLGW2HD8gURoXuxEqv55AWJnuGb5zrvQhdIlhgQHIsjV2QXDJyRGa4YJAzjmG4zEDp7koqDxFZym1ACAl5TN0tXl3WReM7povvW9Cn_XDtnYxCz6zLjVvfTpHJ153yV383Tl6vV9tqsd8_fLwVN2uc0NkSXJmJWXUAMPaG8OBCVwK6jlY5pmwjlosOK6NoFxQVjPLsdVcOCitKxyTdI6up91dDB-DS3vVhiH240tFWFkQIYDwkbqZKBNDStF5tYvNVseDwqB-FKhRgfpVMLLLif1sOnf4H1TP1d3U-AY7q1qO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475288026</pqid></control><display><type>article</type><title>The localization number of designs</title><source>Wiley Online Library All Journals</source><creator>Bonato, Anthony ; Huggan, Melissa A. ; Marbach, Trent G.</creator><creatorcontrib>Bonato, Anthony ; Huggan, Melissa A. ; Marbach, Trent G.</creatorcontrib><description>We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure the robber's capture. We present bounds on the localization number of incidence graphs of balanced incomplete block designs. Exact values of the localization number are given for the incidence graphs of projective and affine planes. Bounds are given for Steiner systems and for transversal designs.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21762</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>balanced incomplete block designs ; Graphs ; incidence graphs ; Localization ; localization number ; projective planes ; Steiner systems</subject><ispartof>Journal of combinatorial designs, 2021-03, Vol.29 (3), p.175-192</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-4d9343c041afcc60481783f60d4f48de3d1861bc836834b4d61da68e07de5e493</citedby><cites>FETCH-LOGICAL-c2972-4d9343c041afcc60481783f60d4f48de3d1861bc836834b4d61da68e07de5e493</cites><orcidid>0000-0003-3969-5412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21762$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21762$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bonato, Anthony</creatorcontrib><creatorcontrib>Huggan, Melissa A.</creatorcontrib><creatorcontrib>Marbach, Trent G.</creatorcontrib><title>The localization number of designs</title><title>Journal of combinatorial designs</title><description>We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure the robber's capture. We present bounds on the localization number of incidence graphs of balanced incomplete block designs. Exact values of the localization number are given for the incidence graphs of projective and affine planes. Bounds are given for Steiner systems and for transversal designs.</description><subject>balanced incomplete block designs</subject><subject>Graphs</subject><subject>incidence graphs</subject><subject>Localization</subject><subject>localization number</subject><subject>projective planes</subject><subject>Steiner systems</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqUw8A8imBjSXj_i2CMK5aVKLGW2HD8gURoXuxEqv55AWJnuGb5zrvQhdIlhgQHIsjV2QXDJyRGa4YJAzjmG4zEDp7koqDxFZym1ACAl5TN0tXl3WReM7povvW9Cn_XDtnYxCz6zLjVvfTpHJ153yV383Tl6vV9tqsd8_fLwVN2uc0NkSXJmJWXUAMPaG8OBCVwK6jlY5pmwjlosOK6NoFxQVjPLsdVcOCitKxyTdI6up91dDB-DS3vVhiH240tFWFkQIYDwkbqZKBNDStF5tYvNVseDwqB-FKhRgfpVMLLLif1sOnf4H1TP1d3U-AY7q1qO</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Bonato, Anthony</creator><creator>Huggan, Melissa A.</creator><creator>Marbach, Trent G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3969-5412</orcidid></search><sort><creationdate>202103</creationdate><title>The localization number of designs</title><author>Bonato, Anthony ; Huggan, Melissa A. ; Marbach, Trent G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-4d9343c041afcc60481783f60d4f48de3d1861bc836834b4d61da68e07de5e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>balanced incomplete block designs</topic><topic>Graphs</topic><topic>incidence graphs</topic><topic>Localization</topic><topic>localization number</topic><topic>projective planes</topic><topic>Steiner systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonato, Anthony</creatorcontrib><creatorcontrib>Huggan, Melissa A.</creatorcontrib><creatorcontrib>Marbach, Trent G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonato, Anthony</au><au>Huggan, Melissa A.</au><au>Marbach, Trent G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The localization number of designs</atitle><jtitle>Journal of combinatorial designs</jtitle><date>2021-03</date><risdate>2021</risdate><volume>29</volume><issue>3</issue><spage>175</spage><epage>192</epage><pages>175-192</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure the robber's capture. We present bounds on the localization number of incidence graphs of balanced incomplete block designs. Exact values of the localization number are given for the incidence graphs of projective and affine planes. Bounds are given for Steiner systems and for transversal designs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcd.21762</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3969-5412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2021-03, Vol.29 (3), p.175-192
issn 1063-8539
1520-6610
language eng
recordid cdi_proquest_journals_2475288026
source Wiley Online Library All Journals
subjects balanced incomplete block designs
Graphs
incidence graphs
Localization
localization number
projective planes
Steiner systems
title The localization number of designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20localization%20number%20of%20designs&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Bonato,%20Anthony&rft.date=2021-03&rft.volume=29&rft.issue=3&rft.spage=175&rft.epage=192&rft.pages=175-192&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.21762&rft_dat=%3Cproquest_cross%3E2475288026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475288026&rft_id=info:pmid/&rfr_iscdi=true