The localization number of designs

We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2021-03, Vol.29 (3), p.175-192
Hauptverfasser: Bonato, Anthony, Huggan, Melissa A., Marbach, Trent G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph G, written ζ ( G ), is the minimum number of cops needed to ensure the robber's capture. We present bounds on the localization number of incidence graphs of balanced incomplete block designs. Exact values of the localization number are given for the incidence graphs of projective and affine planes. Bounds are given for Steiner systems and for transversal designs.
ISSN:1063-8539
1520-6610
DOI:10.1002/jcd.21762