OWMA: An improved self-regulatory woodpecker mating algorithm using opposition-based learning and allocation of local memory for solving optimization problems
Success of metaheuristic algorithms depends on the efficient balance between of exploration and exploitation phases. Any optimization algorithm requires a combination of diverse exploration and proper exploitation to avoid local optima. This paper proposes a new improved version of the Woodpecker Ma...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2021-01, Vol.40 (1), p.919-946 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Success of metaheuristic algorithms depends on the efficient balance between of exploration and exploitation phases. Any optimization algorithm requires a combination of diverse exploration and proper exploitation to avoid local optima. This paper proposes a new improved version of the Woodpecker Mating Algorithm (WMA), based on opposition-based learning, known as the OWMA aiming to develop exploration and exploitation capacities and establish a simultaneous balance between these two phases. This improvement consists of three major mechanisms, the first of which is the new Distance Opposition-based Learning (DOBL) mechanism for improving exploration, diversity, and convergence. The second mechanism is the allocation of local memory of personal experiences of search agents for developing the exploitation capacity. The third mechanism is the use of a self-regulatory and dynamic method for setting the Hα parameter to improve the Running Away function (RA) performance. The ability of the proposed algorithm to solve 23 benchmark mathematical functions was evaluated and compared to that of a series of the latest and most popular metaheuristic methods reviewed in the research literature. The proposed algorithm is also used as a Multi-Layer Perceptron (MLP) neural network trainer to solve the classification problem on four biomedical datasets and three function approximation datasets. In addition, the OWMA algorithm was evaluated in five optimization problems constrained by the real world. The simulation results proved the superior and promising performance of the proposed algorithm in the majority of evaluations. The results prove the superiority and promising performance of the proposed algorithm in solving very complicated optimization problems. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-201075 |