Three-dimensional simulation of reservoir temperature and pollutant transport by the lattice Boltzmann method

Predicting the three-dimensional (3D) transport processes of reservoir temperature and pollutants is essential for water environmental protection and restoration, and introducing the lattice Boltzmann (LB) method into this prediction is necessary because of its simple algorithm, straightforward impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021, Vol.28 (1), p.459-472
Hauptverfasser: Huang, Zehao, Diao, Wei, Wu, Jiayang, Cheng, Yongguang, Huai, Wenxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting the three-dimensional (3D) transport processes of reservoir temperature and pollutants is essential for water environmental protection and restoration, and introducing the lattice Boltzmann (LB) method into this prediction is necessary because of its simple algorithm, straightforward implementation of boundary conditions, and high computation efficiency. In this paper, a triple-distribution function (TDF) LB model for flow-temperature-concentration coupling simulations is introduced. Some essential techniques for implementing this method in 3D reservoirs are also described, including the treatment of water surface fluctuation, the consideration of surface heat exchange, and the hardware acceleration using the graphics processing unit (GPU). Two cases verified the proposed model, and then, the temporal-spatial variations of flow, temperature, and pollutants in the upper reservoir of a pumped-storage power station during both pumping and generating modes were analyzed to demonstrate its applicability. In the reservoir, the water forms several circulations, the cold water from the inlet flows as an undercurrent firstly, and then spread laterally, and the spreading of pollutants directly relates to the flow velocity. The results of flow, temperature, and concentration fields in different working conditions are consistent with model tests and physical laws, which shows good prospects of the proposed LB model.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-10174-8