Visual Object Multimodality Tracking Based on Correlation Filters for Edge Computing

In recent years, visual object tracking has become a very active research field which is mainly divided into the correlation filter-based tracking and deep learning (e.g., deep convolutional neural network and Siamese neural network) based tracking. For target tracking algorithms based on deep learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Yang, Guosheng, Wei, Qisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, visual object tracking has become a very active research field which is mainly divided into the correlation filter-based tracking and deep learning (e.g., deep convolutional neural network and Siamese neural network) based tracking. For target tracking algorithms based on deep learning, a large amount of computation is required, usually deployed on expensive graphics cards. However, for the rich monitoring devices in the Internet of Things, it is difficult to capture all the moving targets in each device in real time, so it is necessary to perform hierarchical processing and use tracking based on correlation filtering in insensitive areas to alleviate the local computing pressure. In sensitive areas, upload the video stream to a cloud computing platform with a faster computing speed to perform an algorithm based on deep features. In this paper, we mainly focus on the correlation filter-based tracking. In the correlation filter-based tracking, the discriminative scale space tracker (DSST) is one of the most popular and typical ones which is successfully applied to many application fields. However, there are still some improvements that need to be further studied for DSST. One is that the algorithms do not consider the target rotation on purpose. The other is that it is a very heavy computational load to extract the histogram of oriented gradient (HOG) features from too many patches centered at the target position in order to ensure the scale estimation accuracy. To address these two problems, we introduce the alterable patch number for target scale tracking and the space searching for target rotation tracking into the standard DSST tracking method and propose a visual object multimodality tracker based on correlation filters (MTCF) to simultaneously cope with translation, scale, and rotation in plane for the tracked target and to obtain the target information of position, scale, and attitude angle at the same time. Finally, in Visual Tracker Benchmark data set, the experiments are performed on the proposed algorithms to show their effectiveness in multimodality tracking.
ISSN:1939-0114
1939-0122
DOI:10.1155/2020/8891035