DRHNet: A Deep Residual Network Based on Heterogeneous Kernel for Steganalysis

Convolutional neural networks as steganalysis have problems such as poor versatility, long training time, and limited image size. For these problems, we present a heterogeneous kernel residual learning framework called DRHNet—Dual Residual Heterogeneous Network—to save time on the networks during th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2020, Vol.2020 (2020), p.1-9
Hauptverfasser: Zhang, Sicong, Xu, Guiyong, Fu, Zixi, Xu, Yang, Xie, Xiaoyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional neural networks as steganalysis have problems such as poor versatility, long training time, and limited image size. For these problems, we present a heterogeneous kernel residual learning framework called DRHNet—Dual Residual Heterogeneous Network—to save time on the networks during the training phase. Instead of using the image as an input of the network, we extract and merge the images into a feature matrix using the rich model and use the generated feature matrix as the real input of the network. The architecture we proposed has good versatility and can reduce the computation and the number of parameters while still getting higher accuracy. On BOSSbase 1.01, we evaluate the performance of DRHNet in the setting of the spatial domain and frequency domain. The preliminary experimental results show that DRHNet shows excellent steganalysis performance against the state-of-the-art steganographic algorithms.
ISSN:1939-0114
1939-0122
DOI:10.1155/2020/8847741