PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images

In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-01, Vol.40 (1), p.154-165
Hauptverfasser: Liu, Dongnan, Zhang, Donghao, Song, Yang, Zhang, Fan, O'Donnell, Lauren, Huang, Heng, Chen, Mei, Cai, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 154
container_title IEEE transactions on medical imaging
container_volume 40
creator Liu, Dongnan
Zhang, Donghao
Song, Yang
Zhang, Fan
O'Donnell, Lauren
Huang, Heng
Chen, Mei
Cai, Weidong
description In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mask R-CNN (DAM) as the baseline, with cross-domain feature alignment at the image and instance levels. In addition to the image- and instance-level domain discrepancy, there also exists domain bias at the semantic level in the contextual information. Next, we, therefore, design a semantic segmentation branch with a domain discriminator to bridge the domain gap at the contextual level. By integrating the semantic- and instance-level feature adaptation, our method aligns the cross-domain features at the panoptic level. Third, we propose a task re-weighting mechanism to assign trade-off weights for the detection and segmentation loss functions. The task re-weighting mechanism solves the domain bias issue by alleviating the task learning for some iterations when the features contain source-specific factors. Furthermore, we design a feature similarity maximization mechanism to facilitate instance-level feature adaptation from the perspective of representational learning. Different from the typical feature alignment methods, our feature similarity maximization mechanism separates the domain-invariant and domain-specific features by enlarging their feature distribution dependency. Experimental results on three UDA instance segmentation scenarios with five datasets demonstrate the effectiveness of our proposed PDAM method, which outperforms state-of-the-art UDA methods by a large margin.
doi_str_mv 10.1109/TMI.2020.3023466
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2474854561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195030</ieee_id><sourcerecordid>2474854561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-81d868f8fcd6c86205b4422995c787d736333c72e29fb4dd1e8a1f63d9cb81e03</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpabZp74VCEfTSizf6sGSpN5N0m4VdEmgCvRmtNF6c2pIj2Vty6W-vzW5y6GkO87wvMzwIfaRkSSnRF3fb9ZIRRpacMJ5L-QotqBAqYyL_9RotCCtURohkZ-hdSg-E0FwQ_RadcaapKDhboL-3V-X2Gy7xrfGhHxqbbeAALV6BGcYIuGybve_AD3gVTQd_QvyN6xDxvU9jD_HQJHD4KnSm8bh0Zmo4AF77NBhvAf-E_Zw1QxM8nohtY2NINvRPeN2ZPaT36E1t2gQfTvMc3a--311eZ5ubH-vLcpNZnhdDpqhTUtWqtk5aJRkRuzxnTGthC1W4gkvOuS0YMF3vcucoKENryZ22O0WB8HP09djbx_A4QhqqrkkW2tZ4CGOq2FxHuRZqQr_8hz6EMfrpuokqciVyIelEkSM1P5Qi1FUfm87Ep4qSanZTTW6q2U11cjNFPp-Kx10H7iXwLGMCPh2BBgBe1ppqQTjh_wCx6ZJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474854561</pqid></control><display><type>article</type><title>PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Dongnan ; Zhang, Donghao ; Song, Yang ; Zhang, Fan ; O'Donnell, Lauren ; Huang, Heng ; Chen, Mei ; Cai, Weidong</creator><creatorcontrib>Liu, Dongnan ; Zhang, Donghao ; Song, Yang ; Zhang, Fan ; O'Donnell, Lauren ; Huang, Heng ; Chen, Mei ; Cai, Weidong</creatorcontrib><description>In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mask R-CNN (DAM) as the baseline, with cross-domain feature alignment at the image and instance levels. In addition to the image- and instance-level domain discrepancy, there also exists domain bias at the semantic level in the contextual information. Next, we, therefore, design a semantic segmentation branch with a domain discriminator to bridge the domain gap at the contextual level. By integrating the semantic- and instance-level feature adaptation, our method aligns the cross-domain features at the panoptic level. Third, we propose a task re-weighting mechanism to assign trade-off weights for the detection and segmentation loss functions. The task re-weighting mechanism solves the domain bias issue by alleviating the task learning for some iterations when the features contain source-specific factors. Furthermore, we design a feature similarity maximization mechanism to facilitate instance-level feature adaptation from the perspective of representational learning. Different from the typical feature alignment methods, our feature similarity maximization mechanism separates the domain-invariant and domain-specific features by enlarging their feature distribution dependency. Experimental results on three UDA instance segmentation scenarios with five datasets demonstrate the effectiveness of our proposed PDAM method, which outperforms state-of-the-art UDA methods by a large margin.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3023466</identifier><identifier>PMID: 32915732</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Alignment ; Bias ; Design ; Design factors ; Feature extraction ; Image processing ; Image segmentation ; Instance segmentation ; Learning ; Maximization ; Microscopy ; microscopy images ; Optimization ; Semantic segmentation ; Semantics ; Similarity ; Task analysis ; Training ; Unsupervised domain adaptation ; Weighting</subject><ispartof>IEEE transactions on medical imaging, 2021-01, Vol.40 (1), p.154-165</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-81d868f8fcd6c86205b4422995c787d736333c72e29fb4dd1e8a1f63d9cb81e03</citedby><cites>FETCH-LOGICAL-c347t-81d868f8fcd6c86205b4422995c787d736333c72e29fb4dd1e8a1f63d9cb81e03</cites><orcidid>0000-0001-8102-3949 ; 0000-0003-3706-8896 ; 0000-0002-5032-6039 ; 0000-0003-0197-7801 ; 0000-0002-3483-8333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9195030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32915732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dongnan</creatorcontrib><creatorcontrib>Zhang, Donghao</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>O'Donnell, Lauren</creatorcontrib><creatorcontrib>Huang, Heng</creatorcontrib><creatorcontrib>Chen, Mei</creatorcontrib><creatorcontrib>Cai, Weidong</creatorcontrib><title>PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mask R-CNN (DAM) as the baseline, with cross-domain feature alignment at the image and instance levels. In addition to the image- and instance-level domain discrepancy, there also exists domain bias at the semantic level in the contextual information. Next, we, therefore, design a semantic segmentation branch with a domain discriminator to bridge the domain gap at the contextual level. By integrating the semantic- and instance-level feature adaptation, our method aligns the cross-domain features at the panoptic level. Third, we propose a task re-weighting mechanism to assign trade-off weights for the detection and segmentation loss functions. The task re-weighting mechanism solves the domain bias issue by alleviating the task learning for some iterations when the features contain source-specific factors. Furthermore, we design a feature similarity maximization mechanism to facilitate instance-level feature adaptation from the perspective of representational learning. Different from the typical feature alignment methods, our feature similarity maximization mechanism separates the domain-invariant and domain-specific features by enlarging their feature distribution dependency. Experimental results on three UDA instance segmentation scenarios with five datasets demonstrate the effectiveness of our proposed PDAM method, which outperforms state-of-the-art UDA methods by a large margin.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Alignment</subject><subject>Bias</subject><subject>Design</subject><subject>Design factors</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Learning</subject><subject>Maximization</subject><subject>Microscopy</subject><subject>microscopy images</subject><subject>Optimization</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Training</subject><subject>Unsupervised domain adaptation</subject><subject>Weighting</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1r3DAQhkVpabZp74VCEfTSizf6sGSpN5N0m4VdEmgCvRmtNF6c2pIj2Vty6W-vzW5y6GkO87wvMzwIfaRkSSnRF3fb9ZIRRpacMJ5L-QotqBAqYyL_9RotCCtURohkZ-hdSg-E0FwQ_RadcaapKDhboL-3V-X2Gy7xrfGhHxqbbeAALV6BGcYIuGybve_AD3gVTQd_QvyN6xDxvU9jD_HQJHD4KnSm8bh0Zmo4AF77NBhvAf-E_Zw1QxM8nohtY2NINvRPeN2ZPaT36E1t2gQfTvMc3a--311eZ5ubH-vLcpNZnhdDpqhTUtWqtk5aJRkRuzxnTGthC1W4gkvOuS0YMF3vcucoKENryZ22O0WB8HP09djbx_A4QhqqrkkW2tZ4CGOq2FxHuRZqQr_8hz6EMfrpuokqciVyIelEkSM1P5Qi1FUfm87Ep4qSanZTTW6q2U11cjNFPp-Kx10H7iXwLGMCPh2BBgBe1ppqQTjh_wCx6ZJg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Liu, Dongnan</creator><creator>Zhang, Donghao</creator><creator>Song, Yang</creator><creator>Zhang, Fan</creator><creator>O'Donnell, Lauren</creator><creator>Huang, Heng</creator><creator>Chen, Mei</creator><creator>Cai, Weidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8102-3949</orcidid><orcidid>https://orcid.org/0000-0003-3706-8896</orcidid><orcidid>https://orcid.org/0000-0002-5032-6039</orcidid><orcidid>https://orcid.org/0000-0003-0197-7801</orcidid><orcidid>https://orcid.org/0000-0002-3483-8333</orcidid></search><sort><creationdate>202101</creationdate><title>PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images</title><author>Liu, Dongnan ; Zhang, Donghao ; Song, Yang ; Zhang, Fan ; O'Donnell, Lauren ; Huang, Heng ; Chen, Mei ; Cai, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-81d868f8fcd6c86205b4422995c787d736333c72e29fb4dd1e8a1f63d9cb81e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Alignment</topic><topic>Bias</topic><topic>Design</topic><topic>Design factors</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Learning</topic><topic>Maximization</topic><topic>Microscopy</topic><topic>microscopy images</topic><topic>Optimization</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Training</topic><topic>Unsupervised domain adaptation</topic><topic>Weighting</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dongnan</creatorcontrib><creatorcontrib>Zhang, Donghao</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>O'Donnell, Lauren</creatorcontrib><creatorcontrib>Huang, Heng</creatorcontrib><creatorcontrib>Chen, Mei</creatorcontrib><creatorcontrib>Cai, Weidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Dongnan</au><au>Zhang, Donghao</au><au>Song, Yang</au><au>Zhang, Fan</au><au>O'Donnell, Lauren</au><au>Huang, Heng</au><au>Chen, Mei</au><au>Cai, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-01</date><risdate>2021</risdate><volume>40</volume><issue>1</issue><spage>154</spage><epage>165</epage><pages>154-165</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mask R-CNN (DAM) as the baseline, with cross-domain feature alignment at the image and instance levels. In addition to the image- and instance-level domain discrepancy, there also exists domain bias at the semantic level in the contextual information. Next, we, therefore, design a semantic segmentation branch with a domain discriminator to bridge the domain gap at the contextual level. By integrating the semantic- and instance-level feature adaptation, our method aligns the cross-domain features at the panoptic level. Third, we propose a task re-weighting mechanism to assign trade-off weights for the detection and segmentation loss functions. The task re-weighting mechanism solves the domain bias issue by alleviating the task learning for some iterations when the features contain source-specific factors. Furthermore, we design a feature similarity maximization mechanism to facilitate instance-level feature adaptation from the perspective of representational learning. Different from the typical feature alignment methods, our feature similarity maximization mechanism separates the domain-invariant and domain-specific features by enlarging their feature distribution dependency. Experimental results on three UDA instance segmentation scenarios with five datasets demonstrate the effectiveness of our proposed PDAM method, which outperforms state-of-the-art UDA methods by a large margin.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32915732</pmid><doi>10.1109/TMI.2020.3023466</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8102-3949</orcidid><orcidid>https://orcid.org/0000-0003-3706-8896</orcidid><orcidid>https://orcid.org/0000-0002-5032-6039</orcidid><orcidid>https://orcid.org/0000-0003-0197-7801</orcidid><orcidid>https://orcid.org/0000-0002-3483-8333</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-01, Vol.40 (1), p.154-165
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2474854561
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Alignment
Bias
Design
Design factors
Feature extraction
Image processing
Image segmentation
Instance segmentation
Learning
Maximization
Microscopy
microscopy images
Optimization
Semantic segmentation
Semantics
Similarity
Task analysis
Training
Unsupervised domain adaptation
Weighting
title PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDAM:%20A%20Panoptic-Level%20Feature%20Alignment%20Framework%20for%20Unsupervised%20Domain%20Adaptive%20Instance%20Segmentation%20in%20Microscopy%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Liu,%20Dongnan&rft.date=2021-01&rft.volume=40&rft.issue=1&rft.spage=154&rft.epage=165&rft.pages=154-165&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3023466&rft_dat=%3Cproquest_RIE%3E2474854561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474854561&rft_id=info:pmid/32915732&rft_ieee_id=9195030&rfr_iscdi=true