PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images

In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-01, Vol.40 (1), p.154-165
Hauptverfasser: Liu, Dongnan, Zhang, Donghao, Song, Yang, Zhang, Fan, O'Donnell, Lauren, Huang, Heng, Chen, Mei, Cai, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present an unsupervised domain adaptation (UDA) method, named Panoptic Domain Adaptive Mask R-CNN (PDAM), for unsupervised instance segmentation in microscopy images. Since there currently lack methods particularly for UDA instance segmentation, we first design a Domain Adaptive Mask R-CNN (DAM) as the baseline, with cross-domain feature alignment at the image and instance levels. In addition to the image- and instance-level domain discrepancy, there also exists domain bias at the semantic level in the contextual information. Next, we, therefore, design a semantic segmentation branch with a domain discriminator to bridge the domain gap at the contextual level. By integrating the semantic- and instance-level feature adaptation, our method aligns the cross-domain features at the panoptic level. Third, we propose a task re-weighting mechanism to assign trade-off weights for the detection and segmentation loss functions. The task re-weighting mechanism solves the domain bias issue by alleviating the task learning for some iterations when the features contain source-specific factors. Furthermore, we design a feature similarity maximization mechanism to facilitate instance-level feature adaptation from the perspective of representational learning. Different from the typical feature alignment methods, our feature similarity maximization mechanism separates the domain-invariant and domain-specific features by enlarging their feature distribution dependency. Experimental results on three UDA instance segmentation scenarios with five datasets demonstrate the effectiveness of our proposed PDAM method, which outperforms state-of-the-art UDA methods by a large margin.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2020.3023466