Methyl farnesoate regulatory mechanisms underlying photoperiod‐dependent sex determination in the freshwater crustacean Daphnia magna

Freshwater zooplankton Daphnia magna has been widely used in ecotoxicology studies. During the last 20 years, it has been demonstrated that the topical application of juvenile hormone (JH) or JH analogs to mother daphnids induce male offspring production. Based on this finding, an in vivo screening...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied toxicology 2021-02, Vol.41 (2), p.216-223
Hauptverfasser: Toyota, Kenji, Sato, Tomomi, Iguchi, Taisen, Ohira, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Freshwater zooplankton Daphnia magna has been widely used in ecotoxicology studies. During the last 20 years, it has been demonstrated that the topical application of juvenile hormone (JH) or JH analogs to mother daphnids induce male offspring production. Based on this finding, an in vivo screening validation method for chemicals with JH agonistic effect has developed. Although this screening system successfully identified a number of JH‐like chemicals, molecular mechanisms underlying the male sex‐determining process remain largely unknown. To address this issue, we established a reliable male‐ or female‐producing system using Daphnia pulex WTN6 strain by changing the rearing photoperiod. Taking advantage of this rearing system, we successfully found several factors involving male sex determination such as ionotropic glutamate receptors, protein kinase C and pantothenate. Here, we used two D. magna strains that can also control the production of female or male offspring by photoperiod differences as model species for ecotoxicology studies. We demonstrated that either treatment of antagonist of ionotropic glutamate receptors or inhibitor of protein kinase C strongly suppressed male offspring production even under male‐producing conditions. Moreover, we revealed that male sex‐determining processes are likely diverged between D. magna and D. pulex based on the current experiment. This study provides a fine experimental method for in vivo screening not only JH agonists but also JH antagonists. Moreover, using daphnids with photoperiod‐dependent sex determination manner will hugely contribute to understanding the mode‐of‐action of JH in daphnids. Two Daphnia magna strains, which could also control the production of female or male offspring by rearing photoperiod conditions, were model species for ecotoxicology studies. We demonstrated that either treatment of antagonist of ionotropic glutamate receptors or inhibitor of protein kinase C strongly suppressed male offspring production even under male‐producing conditions in both strains. This study provides a fine experimental method for in vivo screening not only juvenile hormone (JH) agonists but also JH antagonists.
ISSN:0260-437X
1099-1263
DOI:10.1002/jat.4035