A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices

The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5],...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2021/01/01, Vol.25(1), pp.43-51
Hauptverfasser: Takahashi, Nobuaki, Takago, Daisuke, Takebe, Tsuyoshi
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 43
container_title Journal of Signal Processing
container_volume 25
creator Takahashi, Nobuaki
Takago, Daisuke
Takebe, Tsuyoshi
description The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5], [6]. A 6 × 6 block matrix is obtained from 9-point DFT matrix by matrix manipulation. By using the 6 × 6 block matrix, 3 × 3 circular and quasi-circular matrices can be derived. New identical equations for 3 × 3 circular and quasi-circular matrices have been derived by the authors. A new simple algorithm is given for the Winograd 9-point FFT correctly by using new identical equations for 3 × 3 circular and quasi-circular matrices.
doi_str_mv 10.2299/jsp.25.43
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474567316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474567316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1903-1ce22d013134c2997a3ee4ed4813812264bb55c06cebd0664683e27f05d398423</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRSMEEqWw4A8ssWKR4ldeEpuqtFCpvEQrlpbjTFpXadLaCahfwZIP4sdwCZTNzGh05o7u9bxzgnuUJsnV0q57NOhxduB1SBxjn2DCDt3MOPVDyvCxd2LtEuMwjALW8T766AHe0YterQtA_WJeGV0vViivDLoBo990OUf1AtCrLqu5kRlK_KdKlzUajaYo3aKZ3RE7jXEGZa2VLNBw08haV6X9kWHo69OVgTaqKaS7lGWGnhtptf-_u5e10QrsqXeUy8LC2W_verPRcDq48yePt-NBf-IrkmDmEwWUZs6a86Wc70gyAA4ZjwmLCaUhT9MgUDhUkGbOKw9jBjTKcZCxJOaUdb2LVndtqk0DthbLqjGleykoj3gQRoyEjrpsKWUqaw3kYm30SpqtIFjs8hYub0EDwZljr1t2aWs5hz0pjQulgD-StPh-rRbSCCjZN0fmiDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474567316</pqid></control><display><type>article</type><title>A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Takahashi, Nobuaki ; Takago, Daisuke ; Takebe, Tsuyoshi</creator><creatorcontrib>Takahashi, Nobuaki ; Takago, Daisuke ; Takebe, Tsuyoshi</creatorcontrib><description>The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5], [6]. A 6 × 6 block matrix is obtained from 9-point DFT matrix by matrix manipulation. By using the 6 × 6 block matrix, 3 × 3 circular and quasi-circular matrices can be derived. New identical equations for 3 × 3 circular and quasi-circular matrices have been derived by the authors. A new simple algorithm is given for the Winograd 9-point FFT correctly by using new identical equations for 3 × 3 circular and quasi-circular matrices.</description><identifier>ISSN: 1342-6230</identifier><identifier>EISSN: 1880-1013</identifier><identifier>DOI: 10.2299/jsp.25.43</identifier><language>eng ; jpn</language><publisher>Tokyo: Research Institute of Signal Processing, Japan</publisher><subject>Algorithms ; circular matrix ; Fast Fourier transformations ; Fourier transforms ; Mathematical analysis ; Multiplication ; quasi-circular matrix ; Winograd 9-point FFT</subject><ispartof>Journal of Signal Processing, 2021/01/01, Vol.25(1), pp.43-51</ispartof><rights>2021 Research Institute of Signal Processing, Japan</rights><rights>Copyright Japan Science and Technology Agency 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1903-1ce22d013134c2997a3ee4ed4813812264bb55c06cebd0664683e27f05d398423</citedby><cites>FETCH-LOGICAL-c1903-1ce22d013134c2997a3ee4ed4813812264bb55c06cebd0664683e27f05d398423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27915,27916</link.rule.ids></links><search><creatorcontrib>Takahashi, Nobuaki</creatorcontrib><creatorcontrib>Takago, Daisuke</creatorcontrib><creatorcontrib>Takebe, Tsuyoshi</creatorcontrib><title>A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices</title><title>Journal of Signal Processing</title><addtitle>Journal of Signal Processing</addtitle><description>The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5], [6]. A 6 × 6 block matrix is obtained from 9-point DFT matrix by matrix manipulation. By using the 6 × 6 block matrix, 3 × 3 circular and quasi-circular matrices can be derived. New identical equations for 3 × 3 circular and quasi-circular matrices have been derived by the authors. A new simple algorithm is given for the Winograd 9-point FFT correctly by using new identical equations for 3 × 3 circular and quasi-circular matrices.</description><subject>Algorithms</subject><subject>circular matrix</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Multiplication</subject><subject>quasi-circular matrix</subject><subject>Winograd 9-point FFT</subject><issn>1342-6230</issn><issn>1880-1013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRSMEEqWw4A8ssWKR4ldeEpuqtFCpvEQrlpbjTFpXadLaCahfwZIP4sdwCZTNzGh05o7u9bxzgnuUJsnV0q57NOhxduB1SBxjn2DCDt3MOPVDyvCxd2LtEuMwjALW8T766AHe0YterQtA_WJeGV0vViivDLoBo990OUf1AtCrLqu5kRlK_KdKlzUajaYo3aKZ3RE7jXEGZa2VLNBw08haV6X9kWHo69OVgTaqKaS7lGWGnhtptf-_u5e10QrsqXeUy8LC2W_verPRcDq48yePt-NBf-IrkmDmEwWUZs6a86Wc70gyAA4ZjwmLCaUhT9MgUDhUkGbOKw9jBjTKcZCxJOaUdb2LVndtqk0DthbLqjGleykoj3gQRoyEjrpsKWUqaw3kYm30SpqtIFjs8hYub0EDwZljr1t2aWs5hz0pjQulgD-StPh-rRbSCCjZN0fmiDM</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Takahashi, Nobuaki</creator><creator>Takago, Daisuke</creator><creator>Takebe, Tsuyoshi</creator><general>Research Institute of Signal Processing, Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices</title><author>Takahashi, Nobuaki ; Takago, Daisuke ; Takebe, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1903-1ce22d013134c2997a3ee4ed4813812264bb55c06cebd0664683e27f05d398423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>circular matrix</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Multiplication</topic><topic>quasi-circular matrix</topic><topic>Winograd 9-point FFT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Nobuaki</creatorcontrib><creatorcontrib>Takago, Daisuke</creatorcontrib><creatorcontrib>Takebe, Tsuyoshi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Nobuaki</au><au>Takago, Daisuke</au><au>Takebe, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices</atitle><jtitle>Journal of Signal Processing</jtitle><addtitle>Journal of Signal Processing</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>1342-6230</issn><eissn>1880-1013</eissn><abstract>The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5], [6]. A 6 × 6 block matrix is obtained from 9-point DFT matrix by matrix manipulation. By using the 6 × 6 block matrix, 3 × 3 circular and quasi-circular matrices can be derived. New identical equations for 3 × 3 circular and quasi-circular matrices have been derived by the authors. A new simple algorithm is given for the Winograd 9-point FFT correctly by using new identical equations for 3 × 3 circular and quasi-circular matrices.</abstract><cop>Tokyo</cop><pub>Research Institute of Signal Processing, Japan</pub><doi>10.2299/jsp.25.43</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-6230
ispartof Journal of Signal Processing, 2021/01/01, Vol.25(1), pp.43-51
issn 1342-6230
1880-1013
language eng ; jpn
recordid cdi_proquest_journals_2474567316
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Algorithms
circular matrix
Fast Fourier transformations
Fourier transforms
Mathematical analysis
Multiplication
quasi-circular matrix
Winograd 9-point FFT
title A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Simple%20Algorithm%20for%20Deriving%20the%20Winograd%209-Point%20FFT%20by%20Using%20New%20Identical%20Equations%20for%203%20%C3%97%203%20Circulant%20and%20Quasi-Circulant%20Matrices&rft.jtitle=Journal%20of%20Signal%20Processing&rft.au=Takahashi,%20Nobuaki&rft.date=2021-01-01&rft.volume=25&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=1342-6230&rft.eissn=1880-1013&rft_id=info:doi/10.2299/jsp.25.43&rft_dat=%3Cproquest_cross%3E2474567316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474567316&rft_id=info:pmid/&rfr_iscdi=true