A New Simple Algorithm for Deriving the Winograd 9-Point FFT by Using New Identical Equations for 3 × 3 Circulant and Quasi-Circulant Matrices
The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5],...
Gespeichert in:
Veröffentlicht in: | Journal of Signal Processing 2021/01/01, Vol.25(1), pp.43-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5], [6]. A 6 × 6 block matrix is obtained from 9-point DFT matrix by matrix manipulation. By using the 6 × 6 block matrix, 3 × 3 circular and quasi-circular matrices can be derived. New identical equations for 3 × 3 circular and quasi-circular matrices have been derived by the authors. A new simple algorithm is given for the Winograd 9-point FFT correctly by using new identical equations for 3 × 3 circular and quasi-circular matrices. |
---|---|
ISSN: | 1342-6230 1880-1013 |
DOI: | 10.2299/jsp.25.43 |