Iterative Carrier Frequency Offset Estimation with Independent Component Analysis in BLE Systems

This paper proposes iterative carrier frequency offset (CFO) compensation for spatially multiplexed Bluetooth Low Energy (BLE) signals using independent component analysis (ICA). We apply spatial division multiple access (SDMA) to BLE system to deal with massive number of connection requests of BLE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2021/01/01, Vol.E104.B(1), pp.88-98
Hauptverfasser: TAKIGAWA, Masahiro, TAKAHASHI, Takumi, IBI, Shinsuke, SAMPEI, Seiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes iterative carrier frequency offset (CFO) compensation for spatially multiplexed Bluetooth Low Energy (BLE) signals using independent component analysis (ICA). We apply spatial division multiple access (SDMA) to BLE system to deal with massive number of connection requests of BLE devices expected in the future. According to specifications, each BLE peripheral device is assumed to have CFO of up to 150 [kHz] due to hardware impairments. ICA can resolve spatially multiplexed signals even if they include independent CFO. After the ICA separation, the proposed scheme compensates for the CFO. However, the length of the BLE packet preamble is not long enough to obtain accurate CFO estimates. In order to accurately conduct the CFO compensation using the equivalent of a long pilot signal, preamble and a part of estimated data in the previous process are utilized. In addition, we reveal the fact that the independent CFO of each peripheral improves the capability of ICA blind separation. The results confirm that the proposed scheme can effectively compensate for CFO in the range of up to 150[kHz], which is defined as the acceptable value in the BLE specification.
ISSN:0916-8516
1745-1345
DOI:10.1587/transcom.2020EBP3023