Zero-Sum Triangles for Involutory, Idempotent, Nilpotent and Unipotent Matrices

In some matrix formations, factorizations and transformations, we need special matrices with some properties and we wish that such matrices should be easily and simply generated and of integers. In this paper, we propose a zero-sum rule for the recurrence relations to construct integer triangles as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Hao, Pengwei, Zhang, Chao, Huahan Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In some matrix formations, factorizations and transformations, we need special matrices with some properties and we wish that such matrices should be easily and simply generated and of integers. In this paper, we propose a zero-sum rule for the recurrence relations to construct integer triangles as triangular matrices with involutory, idempotent, nilpotent and unipotent properties, especially nilpotent and unipotent matrices of index 2. With the zero-sum rule we also give the conditions for the special matrices and the generic methods for the generation of those special matrices. The generated integer triangles are mostly newly discovered, and more combinatorial identities can be found with them.
ISSN:2331-8422