OTS Scheme Based Secure Architecture for Energy-Efficient IoT in Edge Infrastructure

For the past few decades, the Internet of Things (IoT) has been one of the main pillars wielding significant impact on various advanced industrial applications, including smart energy, smart manufacturing, and others. These applications are related to industrial plants, automation, and e-healthcare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2021, Vol.66 (3), p.2905-2922
Hauptverfasser: Kumar Singh, Sushil, Pan, Yi, Hyuk Park, Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the past few decades, the Internet of Things (IoT) has been one of the main pillars wielding significant impact on various advanced industrial applications, including smart energy, smart manufacturing, and others. These applications are related to industrial plants, automation, and e-healthcare fields. IoT applications have several issues related to developing, planning, and managing the system. Therefore, IoT is transforming into G-IoT (Green Internet of Things), which realizes energy efficiency. It provides high power efficiency, enhances communication and networking. Nonetheless, this paradigm did not resolve all smart applications’ challenges in edge infrastructure, such as communication bandwidth, centralization, security, and privacy. In this paper, we propose the OTS Scheme based Secure Architecture for Energy-Efficient IoT in Edge Infrastructure to resolve these challenges. An OTS-based Blockchain-enabled distributed network is used at the fog layer for security and privacy. We evaluated our proposed architecture’s performance quantitatively as well as security and privacy. We conducted a comparative analysis with existing studies with different measures, including computing cost time and communication cost. As a result of the evaluation, our proposed architecture showed better performance.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2021.014151