Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans
One of the most significant challenges humanity will face is food production. In order to preserve the output, mineral fertilizers are essential. However, it's not a suitable option in the long term. Magnesium is a crucial macronutrient, but it is the most limiting element in agriculture. Nanot...
Gespeichert in:
Veröffentlicht in: | Notulae botanicae Horti agrobotanici Cluj-Napoca 2020-12, Vol.48 (4), p.2167-2181 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most significant challenges humanity will face is food production. In order to preserve the output, mineral fertilizers are essential. However, it's not a suitable option in the long term. Magnesium is a crucial macronutrient, but it is the most limiting element in agriculture. Nanotechnology, with the implementation of nanofertilizers, is an excellent alternative since it provides nutrients, supports growth, and improves production; this in low amounts is more sustainable than conventional fertilizers. Although there is a piece of limited information regarding the proper foliar application of this macronutrient, the study helped to validate the effect of the foliar application of Magnesium nano fertilizer on the physiological, biochemical responses and yield of bean plants. Bean plants ejotero cv. ‘Strike’ and magnesium nanoparticles were applied at doses of 0, 50, 100, and 200 ppm. The biomass accumulation, yield, activity of the enzyme nitrate reductase, and photosynthetic pigments were evaluated. The foliar application of Mg nanoparticles at 50 ppm generated the highest amount of biomass and photosynthetic pigments. The 100 ppm dose improved pods yield and allowed the increased activity of the Nitrate Reductase enzyme. The results obtained suggest that, when increasing the dose of magnesium in plants, the amount of carotenes decreases. |
---|---|
ISSN: | 0255-965X 1842-4309 |
DOI: | 10.15835/nbha48412090 |