RDF graph validation using rule-based reasoning

The correct functioning of Semantic Web applications requires that given RDF graphs adhere to an expected shape. This shape depends on the RDF graph and the application’s supported entailments of that graph. During validation, RDF graphs are assessed against sets of constraints, and found violations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semantic Web 2020, Vol.12 (1), p.117-142
Hauptverfasser: De Meester, Ben, Heyvaert, Pieter, Arndt, Dörthe, Dimou, Anastasia, Verborgh, Ruben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The correct functioning of Semantic Web applications requires that given RDF graphs adhere to an expected shape. This shape depends on the RDF graph and the application’s supported entailments of that graph. During validation, RDF graphs are assessed against sets of constraints, and found violations help refining the RDF graphs. However, existing validation approaches cannot always explain the root causes of violations (inhibiting refinement), and cannot fully match the entailments supported during validation with those supported by the application. These approaches cannot accurately validate RDF graphs, or combine multiple systems, deteriorating the validator’s performance. In this paper, we present an alternative validation approach using rule-based reasoning, capable of fully customizing the used inferencing steps. We compare to existing approaches, and present a formal ground and practical implementation “Validatrr”, based on N3Logic and the EYE reasoner. Our approach – supporting an equivalent number of constraint types compared to the state of the art – better explains the root cause of the violations due to the reasoner’s generated logical proof, and returns an accurate number of violations due to the customizable inferencing rule set. Performance evaluation shows that Validatrr is performant for smaller datasets, and scales linearly w.r.t. the RDF graph size. The detailed root cause explanations can guide future validation report description specifications, and the fine-grained level of configuration can be employed to support different constraint languages. This foundation allows further research into handling recursion, validating RDF graphs based on their generation description, and providing automatic refinement suggestions.
ISSN:1570-0844
2210-4968
DOI:10.3233/SW-200384