Fast Discrete Finite Hankel Transform for Equations in a Thin Annulus

An algorithm is proposed for a fast discrete finite Hankel transform of a function in a thin annulus. The transform arises in a natural way in the Neumann boundary-value problem for the Poisson equation in an annulus when spectral methods are applied for its numerical solution. The proposed algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and modeling 2020-07, Vol.31 (3), p.364-368
Hauptverfasser: Budzinskiy, S. S., Romanenko, T. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm is proposed for a fast discrete finite Hankel transform of a function in a thin annulus. The transform arises in a natural way in the Neumann boundary-value problem for the Poisson equation in an annulus when spectral methods are applied for its numerical solution. The proposed algorithm uses the limiting properties of eigenvalues and eigenfunctions of the Laplace operator as the annulus thickness goes to zero.
ISSN:1046-283X
1573-837X
DOI:10.1007/s10598-020-09497-5