Homomorphisms with Semilocal Endomorphism Rings Between Modules
We study the category Morph(Mod- R ) whose objects are all morphisms between two right R -modules. The behavior of the objects of Mod- R whose endomorphism ring in Morph(Mod- R ) is semilocal is very similar to the behavior of modules with a semilocal endomorphism ring. For instance, direct-sum deco...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2020-12, Vol.23 (6), p.2237-2256 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the category Morph(Mod-
R
) whose objects are all morphisms between two right
R
-modules. The behavior of the objects of Mod-
R
whose endomorphism ring in Morph(Mod-
R
) is semilocal is very similar to the behavior of modules with a semilocal endomorphism ring. For instance, direct-sum decompositions of a direct sum
⊕
i
=
1
n
M
i
, that is, block-diagonal decompositions, where each object
M
i
of Morph(Mod-
R
) denotes a morphism
μ
M
i
:
M
0
,
i
→
M
1
,
i
and where all the modules
M
j
,
i
have a local endomorphism ring End(
M
j
,
i
), depend on two invariants. This behavior is very similar to that of direct-sum decompositions of serial modules of finite Goldie dimension, which also depend on two invariants (monogeny class and epigeny class). When all the modules
M
j
,
i
are uniserial modules, the direct-sum decompositions (block-diagonal decompositions) of a direct-sum
⊕
i
=
1
n
M
i
depend on four invariants. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-019-09936-x |