Continuity for the Rate Function of the Simple Random Walk on Supercritical Percolation Clusters

We consider the simple random walk on supercritical percolation clusters in the multidimensional cubic lattice. In this model, a quenched large deviation principle holds for the position of the random walk. Its rate function depends on the law of the percolation configuration, and the aim of this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2020-12, Vol.33 (4), p.1948-1973
1. Verfasser: Kubota, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the simple random walk on supercritical percolation clusters in the multidimensional cubic lattice. In this model, a quenched large deviation principle holds for the position of the random walk. Its rate function depends on the law of the percolation configuration, and the aim of this paper is to study the continuity of the rate function in the law. To do this, it is useful that the rate function is expressed by the so-called Lyapunov exponent, which is the asymptotic cost paid by the random walk for traveling in a landscape of percolation configurations. In this context, we first observe the continuity of the Lyapunov exponent in the law of the percolation configuration and then lift it to the rate function.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-019-00936-7