Blowup of smooth solutions to the compressible Euler equations with radial symmetry on bounded domains

In this paper, we study the blowup of smooth solutions to the compressible Euler equations with radial symmetry on some fixed bounded domains ( B R = { x ∈ R N : | x | ≤ R } , N = 1 , 2 , … ) by introducing some new averaged quantities. We consider two types of flows: initially move inward and initi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-12, Vol.71 (6), Article 189
Hauptverfasser: Dong, Jianwei, Yuen, Manwai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the blowup of smooth solutions to the compressible Euler equations with radial symmetry on some fixed bounded domains ( B R = { x ∈ R N : | x | ≤ R } , N = 1 , 2 , … ) by introducing some new averaged quantities. We consider two types of flows: initially move inward and initially move outward on average. For the flow initially moving inward on average, we show that the smooth solutions will blow up in a finite time if the density vanishes at the origin only ( ρ ( t , 0 ) = 0 , ρ ( t , r ) > 0 , 0 < r ≤ R ) for N ≥ 1 or the density vanishes at the origin and the velocity field vanishes on the two endpoints ( ρ ( t , 0 ) = 0 , v ( t , R ) = 0 ) for N = 1 . For the flow initially moving outward, we prove that the smooth solutions will break down in a finite time if the density vanishes on the two endpoints ( ρ ( t , R ) = 0 ) for N = 1 . The blowup mechanisms of the compressible Euler equations with constant damping or time-depending damping are obtained as corollaries.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-020-01392-8