Point-Wise Wavelet Estimation in the Convolution Structure Density Model

By using a kernel method, Lepski and Willer establish adaptive and optimal L p risk estimations in the convolution structure density model in 2017 and 2019. They assume their density functions to be in a Nikol’skii space. Motivated by their work, we first use a linear wavelet estimator to obtain a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2020-12, Vol.26 (6), Article 81
Hauptverfasser: Liu, Youming, Wu, Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using a kernel method, Lepski and Willer establish adaptive and optimal L p risk estimations in the convolution structure density model in 2017 and 2019. They assume their density functions to be in a Nikol’skii space. Motivated by their work, we first use a linear wavelet estimator to obtain a point-wise optimal estimation in the same model. We allow our densities to be in a local and anisotropic Hölder space. Then a data driven method is used to obtain an adaptive and near-optimal estimation. Finally, we show the logarithmic factor necessary to get the adaptivity.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-020-09794-y