Point-Wise Wavelet Estimation in the Convolution Structure Density Model
By using a kernel method, Lepski and Willer establish adaptive and optimal L p risk estimations in the convolution structure density model in 2017 and 2019. They assume their density functions to be in a Nikol’skii space. Motivated by their work, we first use a linear wavelet estimator to obtain a p...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2020-12, Vol.26 (6), Article 81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using a kernel method, Lepski and Willer establish adaptive and optimal
L
p
risk estimations in the convolution structure density model in 2017 and 2019. They assume their density functions to be in a Nikol’skii space. Motivated by their work, we first use a linear wavelet estimator to obtain a point-wise optimal estimation in the same model. We allow our densities to be in a local and anisotropic Hölder space. Then a data driven method is used to obtain an adaptive and near-optimal estimation. Finally, we show the logarithmic factor necessary to get the adaptivity. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-020-09794-y |