Recovering algebraic curves from L-functions of Hilbert class fields
In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curv...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2020-12, Vol.6 (4), Article 43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Research in number theory |
container_volume | 6 |
creator | Booher, Jeremy Voloch, José Felipe |
description | In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curves with isomorphic fundamental groups are themselves isomorphic. |
doi_str_mv | 10.1007/s40993-020-00222-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473809932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473809932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e3e4383d06537db3da4c3519d860ab8ddb538ae58f5a9f4c1549bbff7944c1c13</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwVPEcnmaRtjrL-WWFBED2HNE2WLt12TdoFv72pFbx5mjfDe2_gR8g1g1sGUNxFAUohBQ4UgHNO4YwsOOZIlZTyPGk5HVkOl2QV4x4gaRTJuSAPb872JxeabpeZdueqYBqb2TGcXMx86A_Zlvqxs0PTdzHrfbZp2sqFIbOticnRuLaOV-TCmza61e9cko-nx_f1hm5fn1_W91tqkamBOnQCS6whl1jUFdZGWJRM1WUOpirrupJYGidLL43ywjIpVFV5XyiRFstwSW7m3mPoP0cXB73vx9Cll5qLAssJA08uPrts6GMMzutjaA4mfGkGegKmZ2A6AdM_wDSkEM6heJxYuPBX_U_qG8ZebTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473809932</pqid></control><display><type>article</type><title>Recovering algebraic curves from L-functions of Hilbert class fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Booher, Jeremy ; Voloch, José Felipe</creator><creatorcontrib>Booher, Jeremy ; Voloch, José Felipe</creatorcontrib><description>In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curves with isomorphic fundamental groups are themselves isomorphic.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-020-00222-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>Research in number theory, 2020-12, Vol.6 (4), Article 43</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e3e4383d06537db3da4c3519d860ab8ddb538ae58f5a9f4c1549bbff7944c1c13</citedby><cites>FETCH-LOGICAL-c319t-e3e4383d06537db3da4c3519d860ab8ddb538ae58f5a9f4c1549bbff7944c1c13</cites><orcidid>0000-0003-1245-407X ; 0000-0003-1669-9306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40993-020-00222-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40993-020-00222-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Booher, Jeremy</creatorcontrib><creatorcontrib>Voloch, José Felipe</creatorcontrib><title>Recovering algebraic curves from L-functions of Hilbert class fields</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curves with isomorphic fundamental groups are themselves isomorphic.</description><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouKz7BTwVPEcnmaRtjrL-WWFBED2HNE2WLt12TdoFv72pFbx5mjfDe2_gR8g1g1sGUNxFAUohBQ4UgHNO4YwsOOZIlZTyPGk5HVkOl2QV4x4gaRTJuSAPb872JxeabpeZdueqYBqb2TGcXMx86A_Zlvqxs0PTdzHrfbZp2sqFIbOticnRuLaOV-TCmza61e9cko-nx_f1hm5fn1_W91tqkamBOnQCS6whl1jUFdZGWJRM1WUOpirrupJYGidLL43ywjIpVFV5XyiRFstwSW7m3mPoP0cXB73vx9Cll5qLAssJA08uPrts6GMMzutjaA4mfGkGegKmZ2A6AdM_wDSkEM6heJxYuPBX_U_qG8ZebTI</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Booher, Jeremy</creator><creator>Voloch, José Felipe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1245-407X</orcidid><orcidid>https://orcid.org/0000-0003-1669-9306</orcidid></search><sort><creationdate>20201201</creationdate><title>Recovering algebraic curves from L-functions of Hilbert class fields</title><author>Booher, Jeremy ; Voloch, José Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e3e4383d06537db3da4c3519d860ab8ddb538ae58f5a9f4c1549bbff7944c1c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Booher, Jeremy</creatorcontrib><creatorcontrib>Voloch, José Felipe</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booher, Jeremy</au><au>Voloch, José Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering algebraic curves from L-functions of Hilbert class fields</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>6</volume><issue>4</issue><artnum>43</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curves with isomorphic fundamental groups are themselves isomorphic.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-020-00222-0</doi><orcidid>https://orcid.org/0000-0003-1245-407X</orcidid><orcidid>https://orcid.org/0000-0003-1669-9306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-0160 |
ispartof | Research in number theory, 2020-12, Vol.6 (4), Article 43 |
issn | 2522-0160 2363-9555 |
language | eng |
recordid | cdi_proquest_journals_2473809932 |
source | SpringerLink Journals - AutoHoldings |
subjects | Fields (mathematics) Mathematics Mathematics and Statistics Number Theory |
title | Recovering algebraic curves from L-functions of Hilbert class fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20algebraic%20curves%20from%20L-functions%20of%20Hilbert%20class%20fields&rft.jtitle=Research%20in%20number%20theory&rft.au=Booher,%20Jeremy&rft.date=2020-12-01&rft.volume=6&rft.issue=4&rft.artnum=43&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-020-00222-0&rft_dat=%3Cproquest_cross%3E2473809932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473809932&rft_id=info:pmid/&rfr_iscdi=true |