Recovering algebraic curves from L-functions of Hilbert class fields

In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2020-12, Vol.6 (4), Article 43
Hauptverfasser: Booher, Jeremy, Voloch, José Felipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that a smooth hyperbolic projective curve over a finite field can be recovered from L-functions associated to the Hilbert class field of the curve and its constant field extensions. As a consequence, we give a new proof of a result of Mochizuki and Tamagawa that two such curves with isomorphic fundamental groups are themselves isomorphic.
ISSN:2522-0160
2363-9555
DOI:10.1007/s40993-020-00222-0