On Variational Inequalities with Multivalued Perturbing Terms Depending on Gradients
In this paper, we study variational inequalities of the form ⟨ A ( u ) , v - u ⟩ + ⟨ F ( u ) , v - u ⟩ + J ( v ) - J ( u ) ≥ 0 , ∀ v ∈ X u ∈ X , where A and F are multivalued operators represented by integrals, J is a convex functional, and X is a Sobolev space of variable exponent. The principal te...
Gespeichert in:
Veröffentlicht in: | Differential equations and dynamical systems 2020-10, Vol.28 (4), p.763-790 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study variational inequalities of the form
⟨
A
(
u
)
,
v
-
u
⟩
+
⟨
F
(
u
)
,
v
-
u
⟩
+
J
(
v
)
-
J
(
u
)
≥
0
,
∀
v
∈
X
u
∈
X
,
where
A
and
F
are multivalued operators represented by integrals,
J
is a convex functional, and
X
is a Sobolev space of variable exponent. The principal term
A
is a multivalued operator of Leray–Lions type. We concentrate on the case where
F
is given by a multivalued function
f
=
f
(
x
,
u
,
∇
u
)
that depends also on the gradient
∇
u
of the unknown function. Existence of solutions in coercive and noncoercive cases are considered. In the noncoercive case, we follow a sub-supersolution approach and prove the existence of solutions of the above inequality under a multivalued Bernstein–Nagumo type condition. |
---|---|
ISSN: | 0971-3514 0974-6870 |
DOI: | 10.1007/s12591-017-0345-y |