Using a Min-Cut Generalisation to Go Beyond Boolean Surjective VCSPs

In this work, we first study a natural generalisation of the Min-Cut problem, where a graph is augmented by a superadditive set function defined on its vertex subsets. The goal is to select a vertex subset such that the weight of the induced cut plus the set function value are minimised. In addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2020-12, Vol.82 (12), p.3492-3520
Hauptverfasser: Matl, Gregor, Živný, Stanislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we first study a natural generalisation of the Min-Cut problem, where a graph is augmented by a superadditive set function defined on its vertex subsets. The goal is to select a vertex subset such that the weight of the induced cut plus the set function value are minimised. In addition, a lower and upper bound is imposed on the solution size. We present a polynomial-time algorithm for enumerating all near-optimal solutions of this Bounded Generalised Min-Cut problem. Second, we apply this novel algorithm to surjective general-valued constraint satisfaction problems (VCSPs), i.e., VCSPs in which each label has to be used at least once. On the Boolean domain, Fulla, Uppman, and Živný (ACM ToCT’18) have recently established a complete classification of surjective VCSPs based on an unbounded version of the Generalised Min-Cut problem. Their result features the discovery of a new non-trivial tractable case called EDS that does not appear in the non-surjective setting. As our main result, we extend the class EDS to arbitrary finite domains and provide a conditional complexity classification for surjective VCSPs of this type based on a reduction to smaller domains. On three-element domains, this leads to a complete classification of such VCSPs.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-020-00735-1