Nearly Invariant Subspaces and Rational Interpolation
Given an inner function θ in the upper half-plane, consider the subspace H 2 ⊖ θH 2 of the Hardy space H 2 . For a finite collection Λ of points on the complex plane, the subspace of functions from K θ that vanish on Λ can be represented in the form g ∙ K ω , where ω is an inner function and g is an...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-11, Vol.251 (2), p.258-266 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an inner function
θ
in the upper half-plane, consider the subspace
H
2
⊖
θH
2
of the Hardy space
H
2
. For a finite collection Λ of points on the complex plane, the subspace of functions from
K
θ
that vanish on Λ can be represented in the form
g
∙
K
ω
, where
ω
is an inner function and
g
is an isometric multiplier on
K
ω
. We obtain a description of the functions
ω
and
g
in terms of
θ
and Λ. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-05086-4 |