Nearly Invariant Subspaces and Rational Interpolation

Given an inner function θ in the upper half-plane, consider the subspace H 2 ⊖ θH 2 of the Hardy space H 2 . For a finite collection Λ of points on the complex plane, the subspace of functions from K θ that vanish on Λ can be represented in the form g ∙ K ω , where ω is an inner function and g is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-11, Vol.251 (2), p.258-266
1. Verfasser: Kapustin, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an inner function θ in the upper half-plane, consider the subspace H 2 ⊖ θH 2 of the Hardy space H 2 . For a finite collection Λ of points on the complex plane, the subspace of functions from K θ that vanish on Λ can be represented in the form g ∙ K ω , where ω is an inner function and g is an isometric multiplier on K ω . We obtain a description of the functions ω and g in terms of θ and Λ.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-05086-4