A New Evans Function for Quasi-Periodic Solutions of the Linearised Sine-Gordon Equation

We construct a new Evans function for quasi-periodic solutions to the linearisation of the sine-Gordon equation about a periodic travelling wave. This Evans function is written in terms of fundamental solutions to a Hill’s equation. Applying the Evans-Krein function theory of Kollár and Miller (SIAM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2020-12, Vol.30 (6), p.3421-3442
Hauptverfasser: Clarke, W. A., Marangell, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a new Evans function for quasi-periodic solutions to the linearisation of the sine-Gordon equation about a periodic travelling wave. This Evans function is written in terms of fundamental solutions to a Hill’s equation. Applying the Evans-Krein function theory of Kollár and Miller (SIAM Rev 56(1):73–123, 2014) to our Evans function, we provide a new method for computing the Krein signatures of simple characteristic values of the linearised sine-Gordon equation. By varying the Floquet exponent parametrising the quasi-periodic solutions, we compute the linearised spectra of periodic travelling wave solutions of the sine-Gordon equation and track dynamical Hamiltonian–Hopf bifurcations via the Krein signature. Finally, we show that our new Evans function can be readily applied to the general case of the nonlinear Klein–Gordon equation with a non-periodic potential.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-020-09655-4