Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions

Existence and uniqueness of a solution to the nonstationary Navier–Stokes equations having a prescribed flow rate (flux) in the infinite cylinder Π = { x = ( x ′ , x n ) ∈ R n : x ′ ∈ σ ⊂ R n - 1 , - ∞ < x n < ∞ , n = 2 , 3 } are proved. It is assumed that the flow rate F ∈ L 2 ( 0 , T ) and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-12, Vol.71 (6), Article 192
Hauptverfasser: Pileckas, K., Čiegis, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existence and uniqueness of a solution to the nonstationary Navier–Stokes equations having a prescribed flow rate (flux) in the infinite cylinder Π = { x = ( x ′ , x n ) ∈ R n : x ′ ∈ σ ⊂ R n - 1 , - ∞ < x n < ∞ , n = 2 , 3 } are proved. It is assumed that the flow rate F ∈ L 2 ( 0 , T ) and the initial data u 0 = ( 0 , … , 0 , u 0 n ) ∈ L 2 ( σ ) . The nonstationary Poiseuille solution has the form u ( x , t ) = ( 0 , … , 0 , U ( x ′ , t ) ) , p ( x , t ) = - q ( t ) x n + p 0 ( t ) , where ( U ( x ′ , t ) , q ( t ) ) is a solution of an inverse problem for the heat equation with a specific over-determination condition.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-020-01422-5