Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions
Existence and uniqueness of a solution to the nonstationary Navier–Stokes equations having a prescribed flow rate (flux) in the infinite cylinder Π = { x = ( x ′ , x n ) ∈ R n : x ′ ∈ σ ⊂ R n - 1 , - ∞ < x n < ∞ , n = 2 , 3 } are proved. It is assumed that the flow rate F ∈ L 2 ( 0 , T ) and t...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2020-12, Vol.71 (6), Article 192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existence and uniqueness of a solution to the nonstationary Navier–Stokes equations having a prescribed flow rate (flux) in the infinite cylinder
Π
=
{
x
=
(
x
′
,
x
n
)
∈
R
n
:
x
′
∈
σ
⊂
R
n
-
1
,
-
∞
<
x
n
<
∞
,
n
=
2
,
3
}
are proved. It is assumed that the flow rate
F
∈
L
2
(
0
,
T
)
and the initial data
u
0
=
(
0
,
…
,
0
,
u
0
n
)
∈
L
2
(
σ
)
. The nonstationary Poiseuille solution has the form
u
(
x
,
t
)
=
(
0
,
…
,
0
,
U
(
x
′
,
t
)
)
,
p
(
x
,
t
)
=
-
q
(
t
)
x
n
+
p
0
(
t
)
, where
(
U
(
x
′
,
t
)
,
q
(
t
)
)
is a solution of an inverse problem for the heat equation with a specific over-determination condition. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-020-01422-5 |