Formation of Double Steps on Si (100): Effect of Permeability of the A-Steps
A model of the elementary step motion on a two-domain (100) silicon surface during crystallization from a molecular beam is proposed. The model takes into account the possibility of an adatom transition to an adjacent terrace before incorporation into a kink at the A-step edge (the effect of the A-s...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2020-10, Vol.63 (6), p.901-906 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model of the elementary step motion on a two-domain (100) silicon surface during crystallization from a molecular beam is proposed. The model takes into account the possibility of an adatom transition to an adjacent terrace before incorporation into a kink at the A-step edge (the effect of the A-step permeability). It is shown that the permeability of the A-step contributes to the faster pairing of the A- and B-steps and, consequently, transition to a single-domain surface. For the fast pairing of the steps, it is sufficient only the presence of an inverse Ehrlich–Schwoebel barrier for the attachment of adatoms to the A-step from the B-type terrace. A conventional barrier (for the attachment from the A-type terrace) may be absent, which is consistent with the results of quantum chemical calculations. |
---|---|
ISSN: | 1064-8887 1573-9228 |
DOI: | 10.1007/s11182-020-02116-1 |