On Descartes’ rule for polynomials with two variations of signs
For sequences of d + 1 signs + and − beginning with a + and having exactly two variations of sign, we give some sufficient conditions for the (non)existence of degree d real univariate polynomials with such signs of the coefficients and having given numbers of positive and negative roots compatible...
Gespeichert in:
Veröffentlicht in: | Lithuanian mathematical journal 2020-10, Vol.60 (4), p.456-469 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For sequences of
d
+ 1 signs + and
−
beginning with a + and having exactly two variations of sign, we give some sufficient conditions for the (non)existence of degree
d
real univariate polynomials with such signs of the coefficients and having given numbers of positive and negative roots compatible with Descartes’ rule of signs. |
---|---|
ISSN: | 0363-1672 1573-8825 |
DOI: | 10.1007/s10986-020-09491-9 |