On Descartes’ rule for polynomials with two variations of signs

For sequences of d + 1 signs + and − beginning with a + and having exactly two variations of sign, we give some sufficient conditions for the (non)existence of degree d real univariate polynomials with such signs of the coefficients and having given numbers of positive and negative roots compatible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithuanian mathematical journal 2020-10, Vol.60 (4), p.456-469
Hauptverfasser: Cheriha, Hassen, Gati, Yousra, Kostov, Vladimir Petrov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For sequences of d + 1 signs + and − beginning with a + and having exactly two variations of sign, we give some sufficient conditions for the (non)existence of degree d real univariate polynomials with such signs of the coefficients and having given numbers of positive and negative roots compatible with Descartes’ rule of signs.
ISSN:0363-1672
1573-8825
DOI:10.1007/s10986-020-09491-9