Local asymptotics for orthonormal polynomials on the unit circle via universality
Let µ be a positive measure on the unit circle that is regular in the sense of Stahl, Totik, and Ullmann. Assume that in some subarc J, µ is absolutely continuous, while µ ′ is positive and continuous. Let { φ n } be the orthonormal polynomials for µ . We show that for appropriate ζ n ∈ J , { φ n (...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2020-09, Vol.141 (1), p.285-304 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
µ
be a positive measure on the unit circle that is regular in the sense of Stahl, Totik, and Ullmann. Assume that in some subarc
J, µ
is absolutely continuous, while
µ
′ is positive and continuous. Let {
φ
n
} be the orthonormal polynomials for
µ
. We show that for appropriate
ζ
n
∈
J
,
{
φ
n
(
ζ
n
(
1
+
z
n
)
)
φ
n
(
ζ
n
)
}
n
≥
1
is a normal family in compact subsets of ℂ. Using universality limits, we show that limits of subsequences have the form
e
z
+
C
(
e
z
− 1) for some constant
C
. Under additional conditions, we can set
C
= 0. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-020-0121-8 |