Cyclic Flats of a Polymatroid
Polymatroids can be considered as “fractional matroids” where the rank function is not required to be integer valued. Many, but not every notion in matroid terminology translates naturally to polymatroids. Defining cyclic flats of a polymatroid carefully, the characterization by Bonin and de Mier of...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2020-12, Vol.24 (4), p.637-648 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymatroids can be considered as “fractional matroids” where the rank function is not required to be integer valued. Many, but not every notion in matroid terminology translates naturally to polymatroids. Defining cyclic flats of a polymatroid carefully, the characterization by Bonin and de Mier of the ranked lattice of cyclic flats carries over to polymatroids. The main tool, which might be of independent interest, is a convolution-like method which creates a polymatroid from a ranked lattice and a discrete measure. Examples show the ease of using the convolution technique. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-020-00506-3 |