Algebraic genericity and summability within the non-Archimedean setting
In this paper, we establish the analogue of some recent lineability and algebrability results on the sets of sequences and series within the context of p -adic analysis. More specifically, we prove (among several other results) that: (i) in the space of all p -adic sequences, the set of all converge...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2021, Vol.115 (1), Article 21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish the analogue of some recent lineability and algebrability results on the sets of sequences and series within the context of
p
-adic analysis. More specifically, we prove (among several other results) that: (i) in the space of all
p
-adic sequences, the set of all convergent sequences for which Cesàro’s Theorem
fails
is lineable, (ii) the set of all non-absolutely convergent
p
-adic series considered with Cauchy product or pointwise product is algebrable in
c
0
. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-020-00961-w |