Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics

For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Russian laser research 2020-11, Vol.41 (6), p.576-583
Hauptverfasser: Chernega, Vladimir N., Man’ko, Margarita A., Man’ko, Vladimir I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 6
container_start_page 576
container_title Journal of Russian laser research
container_volume 41
creator Chernega, Vladimir N.
Man’ko, Margarita A.
Man’ko, Vladimir I.
description For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with quantum states in the probability representation of quantum mechanics. We discuss the possibility to experimentally detect the difference between the system states described by the solutions, corresponding to the Schrödinger equation with Hermitian and non-Hermitian Hamiltonians, by measuring the probabilities of artificial spin-1 / 2 projections m = ± 1 / 2, sets of which are identified with qudit states. We show that different symmetries of systems, including PT -symmetry and broken PT -symmetry, are determined by a set of N complex eigenvalues of the Hamiltonian matrix H .
doi_str_mv 10.1007/s10946-020-09912-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473784535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473784535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6caf15fef85afd9153634ba99907d592e62a401401abfa105fb40764d660fe6a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Sy2SSbYyn1A-oneg7Z3aTd0m7aJCvUX-_aFbwJAzOH93kHHoQuKVxTAHkTKahcEMiAgFI0I_IIjSiXjBRSwHF_g6QkK5g4RWcxrgBAFYUaIfPamTY1X7Yms9aGxR7Pdp1JjW-x8wE_kbn9tGs8SX6DmxanpcUvwZembNZN2uM3uw022jYNiHf40Ndt8KOtlqZtqniOTpxZR3vxu8fo43b2Pr0n8-e7h-lkTipGVSKiMo5yZ13BjasV5UywvDRKKZA1V5kVmcmB9mNKZyhwV-YgRV4LAc4Kw8boaujdBr_rbEx65bvQ9i91lksmi5wz3qeyIVUFH2OwTm9DszFhrynoH5V6UKl7lfqgUsseYgMU-3C7sOGv-h_qGwR7dxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473784535</pqid></control><display><type>article</type><title>Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chernega, Vladimir N. ; Man’ko, Margarita A. ; Man’ko, Vladimir I.</creator><creatorcontrib>Chernega, Vladimir N. ; Man’ko, Margarita A. ; Man’ko, Vladimir I.</creatorcontrib><description>For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with quantum states in the probability representation of quantum mechanics. We discuss the possibility to experimentally detect the difference between the system states described by the solutions, corresponding to the Schrödinger equation with Hermitian and non-Hermitian Hamiltonians, by measuring the probabilities of artificial spin-1 / 2 projections m = ± 1 / 2, sets of which are identified with qudit states. We show that different symmetries of systems, including PT -symmetry and broken PT -symmetry, are determined by a set of N complex eigenvalues of the Hamiltonian matrix H .</description><identifier>ISSN: 1071-2836</identifier><identifier>EISSN: 1573-8760</identifier><identifier>DOI: 10.1007/s10946-020-09912-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Eigenvalues ; Eigenvectors ; Hamiltonian functions ; Lasers ; Mathematical analysis ; Matrix methods ; Microwaves ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Probability ; Quantum mechanics ; Quantum physics ; Representations ; RF and Optical Engineering ; Schrodinger equation ; State vectors ; Symmetry</subject><ispartof>Journal of Russian laser research, 2020-11, Vol.41 (6), p.576-583</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6caf15fef85afd9153634ba99907d592e62a401401abfa105fb40764d660fe6a3</citedby><cites>FETCH-LOGICAL-c319t-6caf15fef85afd9153634ba99907d592e62a401401abfa105fb40764d660fe6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10946-020-09912-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10946-020-09912-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chernega, Vladimir N.</creatorcontrib><creatorcontrib>Man’ko, Margarita A.</creatorcontrib><creatorcontrib>Man’ko, Vladimir I.</creatorcontrib><title>Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics</title><title>Journal of Russian laser research</title><addtitle>J Russ Laser Res</addtitle><description>For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with quantum states in the probability representation of quantum mechanics. We discuss the possibility to experimentally detect the difference between the system states described by the solutions, corresponding to the Schrödinger equation with Hermitian and non-Hermitian Hamiltonians, by measuring the probabilities of artificial spin-1 / 2 projections m = ± 1 / 2, sets of which are identified with qudit states. We show that different symmetries of systems, including PT -symmetry and broken PT -symmetry, are determined by a set of N complex eigenvalues of the Hamiltonian matrix H .</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Hamiltonian functions</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Microwaves</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probability</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Representations</subject><subject>RF and Optical Engineering</subject><subject>Schrodinger equation</subject><subject>State vectors</subject><subject>Symmetry</subject><issn>1071-2836</issn><issn>1573-8760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Sy2SSbYyn1A-oneg7Z3aTd0m7aJCvUX-_aFbwJAzOH93kHHoQuKVxTAHkTKahcEMiAgFI0I_IIjSiXjBRSwHF_g6QkK5g4RWcxrgBAFYUaIfPamTY1X7Yms9aGxR7Pdp1JjW-x8wE_kbn9tGs8SX6DmxanpcUvwZembNZN2uM3uw022jYNiHf40Ndt8KOtlqZtqniOTpxZR3vxu8fo43b2Pr0n8-e7h-lkTipGVSKiMo5yZ13BjasV5UywvDRKKZA1V5kVmcmB9mNKZyhwV-YgRV4LAc4Kw8boaujdBr_rbEx65bvQ9i91lksmi5wz3qeyIVUFH2OwTm9DszFhrynoH5V6UKl7lfqgUsseYgMU-3C7sOGv-h_qGwR7dxM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Chernega, Vladimir N.</creator><creator>Man’ko, Margarita A.</creator><creator>Man’ko, Vladimir I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics</title><author>Chernega, Vladimir N. ; Man’ko, Margarita A. ; Man’ko, Vladimir I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6caf15fef85afd9153634ba99907d592e62a401401abfa105fb40764d660fe6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Hamiltonian functions</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Microwaves</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probability</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Representations</topic><topic>RF and Optical Engineering</topic><topic>Schrodinger equation</topic><topic>State vectors</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernega, Vladimir N.</creatorcontrib><creatorcontrib>Man’ko, Margarita A.</creatorcontrib><creatorcontrib>Man’ko, Vladimir I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Russian laser research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernega, Vladimir N.</au><au>Man’ko, Margarita A.</au><au>Man’ko, Vladimir I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics</atitle><jtitle>Journal of Russian laser research</jtitle><stitle>J Russ Laser Res</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>576</spage><epage>583</epage><pages>576-583</pages><issn>1071-2836</issn><eissn>1573-8760</eissn><abstract>For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with quantum states in the probability representation of quantum mechanics. We discuss the possibility to experimentally detect the difference between the system states described by the solutions, corresponding to the Schrödinger equation with Hermitian and non-Hermitian Hamiltonians, by measuring the probabilities of artificial spin-1 / 2 projections m = ± 1 / 2, sets of which are identified with qudit states. We show that different symmetries of systems, including PT -symmetry and broken PT -symmetry, are determined by a set of N complex eigenvalues of the Hamiltonian matrix H .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10946-020-09912-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-2836
ispartof Journal of Russian laser research, 2020-11, Vol.41 (6), p.576-583
issn 1071-2836
1573-8760
language eng
recordid cdi_proquest_journals_2473784535
source SpringerLink Journals - AutoHoldings
subjects Eigenvalues
Eigenvectors
Hamiltonian functions
Lasers
Mathematical analysis
Matrix methods
Microwaves
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Probability
Quantum mechanics
Quantum physics
Representations
RF and Optical Engineering
Schrodinger equation
State vectors
Symmetry
title Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantized-Energy%20Equation%20for%20N-Level%20Atom%20in%20the%20Probability%20Representation%20of%20Quantum%20Mechanics&rft.jtitle=Journal%20of%20Russian%20laser%20research&rft.au=Chernega,%20Vladimir%20N.&rft.date=2020-11-01&rft.volume=41&rft.issue=6&rft.spage=576&rft.epage=583&rft.pages=576-583&rft.issn=1071-2836&rft.eissn=1573-8760&rft_id=info:doi/10.1007/s10946-020-09912-7&rft_dat=%3Cproquest_cross%3E2473784535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473784535&rft_id=info:pmid/&rfr_iscdi=true