Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics

For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Russian laser research 2020-11, Vol.41 (6), p.576-583
Hauptverfasser: Chernega, Vladimir N., Man’ko, Margarita A., Man’ko, Vladimir I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For Hermitian and non-Hermitian Hamiltonian matrices H , we present the Schr ̈odinger equation for qudit (spin- j system, N -level atom) with the state vector | ψ 〉 in a new form of the linear eigenvalue equation for the matrix H = ( H ⊗ 1 N ) and the probability eigenvector | p 〉 identified with quantum states in the probability representation of quantum mechanics. We discuss the possibility to experimentally detect the difference between the system states described by the solutions, corresponding to the Schrödinger equation with Hermitian and non-Hermitian Hamiltonians, by measuring the probabilities of artificial spin-1 / 2 projections m = ± 1 / 2, sets of which are identified with qudit states. We show that different symmetries of systems, including PT -symmetry and broken PT -symmetry, are determined by a set of N complex eigenvalues of the Hamiltonian matrix H .
ISSN:1071-2836
1573-8760
DOI:10.1007/s10946-020-09912-7