The Structure of Computably Enumerable Preorder Relations

We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2020-07, Vol.59 (3), p.201-215
Hauptverfasser: Badaev, S. A., Bazhenov, N. A., Kalmurzaev, B. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 3
container_start_page 201
container_title Algebra and logic
container_volume 59
creator Badaev, S. A.
Bazhenov, N. A.
Kalmurzaev, B. S.
description We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply that the theory of the structure Ceprs is computably isomorphic to first-order arithmetic. It is shown that a Σ 1 -fragment of the theory is decidable, while its Π 3 -fragment is hereditarily undecidable. It is stated that any two incomparable degrees in Ceprs do not have a least upper bound, and that among minimal degrees in Ceprs , exactly two are c-degrees of computably enumerable linear preorders.
doi_str_mv 10.1007/s10469-020-09592-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473780899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680677705</galeid><sourcerecordid>A680677705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-9cdcb1a08180b79a0fd38a7b708ece0250bd954b39e9e9b90edf79d29734654b3</originalsourceid><addsrcrecordid>eNqNkd9LwzAQx4MoOKf_gE8FnzuvSds0j2PMHzBQdD6HNL3OjraZSQvbf29mhSnIkHu4y_H53pH7EnIdwSQC4LcugjgVIVAIQSSChtsTMooSzsKMAT0lIwCgYUIZPScXzq39U6QZjIhYvmPw2tled73FwJTBzDSbvlN5vQvmbd-g9SUGzxaNLdAGL1irrjKtuyRnpaodXn3nMXm7my9nD-Hi6f5xNl2EOk5YFwpd6DxSkEUZ5FwoKAuWKZ5zyFAj0ATyQiRxzgT6yAVgUXJRUMFZnO77Y3IzzN1Y89Gj6-Ta9Lb1KyWNOeMZZEIcqJWqUVZtaTqrdFM5LaccgPGY-d8fo_w5Us45JJ6a_EH5KLCptGmxrHz_19h_CX5uoINAW-OcxVJubNUou5MRyL2hcjBUekPll6Fy60VsEDkPtyu0h0McUX0CJJOgAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473780899</pqid></control><display><type>article</type><title>The Structure of Computably Enumerable Preorder Relations</title><source>SpringerNature Journals</source><creator>Badaev, S. A. ; Bazhenov, N. A. ; Kalmurzaev, B. S.</creator><creatorcontrib>Badaev, S. A. ; Bazhenov, N. A. ; Kalmurzaev, B. S.</creatorcontrib><description>We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply that the theory of the structure Ceprs is computably isomorphic to first-order arithmetic. It is shown that a Σ 1 -fragment of the theory is decidable, while its Π 3 -fragment is hereditarily undecidable. It is stated that any two incomparable degrees in Ceprs do not have a least upper bound, and that among minimal degrees in Ceprs , exactly two are c-degrees of computably enumerable linear preorders.</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-020-09592-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Fuzzy sets ; Mathematical Logic and Foundations ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Number theory ; Set theory ; Upper bounds</subject><ispartof>Algebra and logic, 2020-07, Vol.59 (3), p.201-215</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-9cdcb1a08180b79a0fd38a7b708ece0250bd954b39e9e9b90edf79d29734654b3</citedby><cites>FETCH-LOGICAL-c453t-9cdcb1a08180b79a0fd38a7b708ece0250bd954b39e9e9b90edf79d29734654b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-020-09592-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-020-09592-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Badaev, S. A.</creatorcontrib><creatorcontrib>Bazhenov, N. A.</creatorcontrib><creatorcontrib>Kalmurzaev, B. S.</creatorcontrib><title>The Structure of Computably Enumerable Preorder Relations</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply that the theory of the structure Ceprs is computably isomorphic to first-order arithmetic. It is shown that a Σ 1 -fragment of the theory is decidable, while its Π 3 -fragment is hereditarily undecidable. It is stated that any two incomparable degrees in Ceprs do not have a least upper bound, and that among minimal degrees in Ceprs , exactly two are c-degrees of computably enumerable linear preorders.</description><subject>Algebra</subject><subject>Fuzzy sets</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><subject>Set theory</subject><subject>Upper bounds</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkd9LwzAQx4MoOKf_gE8FnzuvSds0j2PMHzBQdD6HNL3OjraZSQvbf29mhSnIkHu4y_H53pH7EnIdwSQC4LcugjgVIVAIQSSChtsTMooSzsKMAT0lIwCgYUIZPScXzq39U6QZjIhYvmPw2tled73FwJTBzDSbvlN5vQvmbd-g9SUGzxaNLdAGL1irrjKtuyRnpaodXn3nMXm7my9nD-Hi6f5xNl2EOk5YFwpd6DxSkEUZ5FwoKAuWKZ5zyFAj0ATyQiRxzgT6yAVgUXJRUMFZnO77Y3IzzN1Y89Gj6-Ta9Lb1KyWNOeMZZEIcqJWqUVZtaTqrdFM5LaccgPGY-d8fo_w5Us45JJ6a_EH5KLCptGmxrHz_19h_CX5uoINAW-OcxVJubNUou5MRyL2hcjBUekPll6Fy60VsEDkPtyu0h0McUX0CJJOgAw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Badaev, S. A.</creator><creator>Bazhenov, N. A.</creator><creator>Kalmurzaev, B. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>The Structure of Computably Enumerable Preorder Relations</title><author>Badaev, S. A. ; Bazhenov, N. A. ; Kalmurzaev, B. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-9cdcb1a08180b79a0fd38a7b708ece0250bd954b39e9e9b90edf79d29734654b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Fuzzy sets</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><topic>Set theory</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badaev, S. A.</creatorcontrib><creatorcontrib>Bazhenov, N. A.</creatorcontrib><creatorcontrib>Kalmurzaev, B. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badaev, S. A.</au><au>Bazhenov, N. A.</au><au>Kalmurzaev, B. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of Computably Enumerable Preorder Relations</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>59</volume><issue>3</issue><spage>201</spage><epage>215</epage><pages>201-215</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply that the theory of the structure Ceprs is computably isomorphic to first-order arithmetic. It is shown that a Σ 1 -fragment of the theory is decidable, while its Π 3 -fragment is hereditarily undecidable. It is stated that any two incomparable degrees in Ceprs do not have a least upper bound, and that among minimal degrees in Ceprs , exactly two are c-degrees of computably enumerable linear preorders.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10469-020-09592-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5232
ispartof Algebra and logic, 2020-07, Vol.59 (3), p.201-215
issn 0002-5232
1573-8302
language eng
recordid cdi_proquest_journals_2473780899
source SpringerNature Journals
subjects Algebra
Fuzzy sets
Mathematical Logic and Foundations
Mathematical research
Mathematics
Mathematics and Statistics
Number theory
Set theory
Upper bounds
title The Structure of Computably Enumerable Preorder Relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20Computably%20Enumerable%20Preorder%20Relations&rft.jtitle=Algebra%20and%20logic&rft.au=Badaev,%20S.%20A.&rft.date=2020-07-01&rft.volume=59&rft.issue=3&rft.spage=201&rft.epage=215&rft.pages=201-215&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-020-09592-x&rft_dat=%3Cgale_proqu%3EA680677705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473780899&rft_id=info:pmid/&rft_galeid=A680677705&rfr_iscdi=true