The Structure of Computably Enumerable Preorder Relations

We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2020-07, Vol.59 (3), p.201-215
Hauptverfasser: Badaev, S. A., Bazhenov, N. A., Kalmurzaev, B. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤ c . It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs . This fact and results of Andrews, Schweber, and Sorbi imply that the theory of the structure Ceprs is computably isomorphic to first-order arithmetic. It is shown that a Σ 1 -fragment of the theory is decidable, while its Π 3 -fragment is hereditarily undecidable. It is stated that any two incomparable degrees in Ceprs do not have a least upper bound, and that among minimal degrees in Ceprs , exactly two are c-degrees of computably enumerable linear preorders.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-020-09592-x