Diskcyclicity of Sets of Operators and Applications

In this paper, we introduce and study the diskcyclicity and disk transitivity of a set of operators. We establish a diskcyclicity criterion and give the relationship between this criterion and the diskcyclicity. As applications, we study the diskcyclicty of C 0 -semigroups and C -regularized groups....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2020-11, Vol.36 (11), p.1203-1220
Hauptverfasser: Amouch, Mohamed, Benchiheb, Otmane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce and study the diskcyclicity and disk transitivity of a set of operators. We establish a diskcyclicity criterion and give the relationship between this criterion and the diskcyclicity. As applications, we study the diskcyclicty of C 0 -semigroups and C -regularized groups. We show that a diskcyclic C 0 -semigroup exists on a complex topological vector space X if and only if dim( X ) = 1 or dim( X ) = ∞ and we prove that diskcyclicity and disk transitivity of C 0 -semigroups (resp C -regularized groups) are equivalent.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-020-9307-3