Diskcyclicity of Sets of Operators and Applications
In this paper, we introduce and study the diskcyclicity and disk transitivity of a set of operators. We establish a diskcyclicity criterion and give the relationship between this criterion and the diskcyclicity. As applications, we study the diskcyclicty of C 0 -semigroups and C -regularized groups....
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2020-11, Vol.36 (11), p.1203-1220 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce and study the diskcyclicity and disk transitivity of a set of operators. We establish a diskcyclicity criterion and give the relationship between this criterion and the diskcyclicity. As applications, we study the diskcyclicty of
C
0
-semigroups and
C
-regularized groups. We show that a diskcyclic
C
0
-semigroup exists on a complex topological vector space
X
if and only if dim(
X
) = 1 or dim(
X
) = ∞ and we prove that diskcyclicity and disk transitivity of
C
0
-semigroups (resp
C
-regularized groups) are equivalent. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-020-9307-3 |