2D Carbon-Supported Platinum Catalysts for Hydrosilylation Reactions
2D carbon structures were prepared by carbonization of biopolymers (starch) via self-propagating high-temperature synthesis process. Electron microscopic, Raman spectroscopic, and X-ray diffraction examinations showed that the structure of the resultant particles corresponded to graphene nanoplatele...
Gespeichert in:
Veröffentlicht in: | Russian journal of general chemistry 2020-10, Vol.90 (10), p.1944-1948 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2D carbon structures were prepared by carbonization of biopolymers (starch) via self-propagating high-temperature synthesis process. Electron microscopic, Raman spectroscopic, and X-ray diffraction examinations showed that the structure of the resultant particles corresponded to graphene nanoplatelets. Based on the Raman spectroscopy data, the average number of graphene layers in a graphene nanoplatelets particle was estimated at 2–5. The graphene nanoplatelets synthesized were applied as a support of a platinum-based catalyst (Speier’s catalyst). The resultant supported catalyst was successfully used in the hydrosilylation of 1-hexene with methyldichlorosilane and then separated from the reaction products and reused. The catalytic activity of the supported catalyst was maintained for 4 months. |
---|---|
ISSN: | 1070-3632 1608-3350 |
DOI: | 10.1134/S1070363220100163 |