Controllability and Observability of Linear Quaternion-valued Systems
The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or c...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2020-11, Vol.36 (11), p.1299-1314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1314 |
---|---|
container_issue | 11 |
container_start_page | 1299 |
container_title | Acta mathematica Sinica. English series |
container_volume | 36 |
creator | Jiang, Bang Xin Liu, Yang Kou, Kit Ian Wang, Zhen |
description | The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or complex-valued linear systems, it is shown that the classical Caylay-Hamilton Theorem as well as Popov-Belevitch-Hautus (PBH) type controllability and observability test do not hold for linear QVS. Hence, a modified PBH type necessary condition is studied for the controllability and observability, respectively. Finally, some examples are given to illustrate the effectiveness of the obtained results. |
doi_str_mv | 10.1007/s10114-020-8167-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473775552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473775552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a7737d37a9bdce3b2782ab45e173f5d82fc375128444d3633e662c4a40df3bfa3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52gmn9ujlPoBhSLqOWQ3iWzZJjXZLey_d8tWPHmaYXjed-BB6BbIPRCiHjIQAI4JJbgEqTCcoRlwtsBKgjo_7aUAeYmuct4SIsSCyBlaLWPoUmxbUzVt0w2FCbbYVNmlw-8l-mLdBGdS8dabzqXQxIAPpu2dLd6H3LldvkYX3rTZ3ZzmHH0-rT6WL3i9eX5dPq5xzUB22CjFlGXKLCpbO1ZRVVJTceFAMS9sSX3NlABacs4tk4w5KWnNDSfWs8obNkd3U-8-xe_e5U5vY5_C-FJTPnYrIQQdKZioOsWck_N6n5qdSYMGoo-29GRLj7b00ZaGMUOnTB7Z8OXSX_P_oR_j62zF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473775552</pqid></control><display><type>article</type><title>Controllability and Observability of Linear Quaternion-valued Systems</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Jiang, Bang Xin ; Liu, Yang ; Kou, Kit Ian ; Wang, Zhen</creator><creatorcontrib>Jiang, Bang Xin ; Liu, Yang ; Kou, Kit Ian ; Wang, Zhen</creatorcontrib><description>The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or complex-valued linear systems, it is shown that the classical Caylay-Hamilton Theorem as well as Popov-Belevitch-Hautus (PBH) type controllability and observability test do not hold for linear QVS. Hence, a modified PBH type necessary condition is studied for the controllability and observability, respectively. Finally, some examples are given to illustrate the effectiveness of the obtained results.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-020-8167-1</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Controllability ; Duality theorem ; Linear systems ; Mathematics ; Mathematics and Statistics ; Observability (systems) ; Quaternions ; Stability</subject><ispartof>Acta mathematica Sinica. English series, 2020-11, Vol.36 (11), p.1299-1314</ispartof><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2020</rights><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a7737d37a9bdce3b2782ab45e173f5d82fc375128444d3633e662c4a40df3bfa3</citedby><cites>FETCH-LOGICAL-c316t-a7737d37a9bdce3b2782ab45e173f5d82fc375128444d3633e662c4a40df3bfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-020-8167-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-020-8167-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Jiang, Bang Xin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Kou, Kit Ian</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><title>Controllability and Observability of Linear Quaternion-valued Systems</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or complex-valued linear systems, it is shown that the classical Caylay-Hamilton Theorem as well as Popov-Belevitch-Hautus (PBH) type controllability and observability test do not hold for linear QVS. Hence, a modified PBH type necessary condition is studied for the controllability and observability, respectively. Finally, some examples are given to illustrate the effectiveness of the obtained results.</description><subject>Controllability</subject><subject>Duality theorem</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Observability (systems)</subject><subject>Quaternions</subject><subject>Stability</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52gmn9ujlPoBhSLqOWQ3iWzZJjXZLey_d8tWPHmaYXjed-BB6BbIPRCiHjIQAI4JJbgEqTCcoRlwtsBKgjo_7aUAeYmuct4SIsSCyBlaLWPoUmxbUzVt0w2FCbbYVNmlw-8l-mLdBGdS8dabzqXQxIAPpu2dLd6H3LldvkYX3rTZ3ZzmHH0-rT6WL3i9eX5dPq5xzUB22CjFlGXKLCpbO1ZRVVJTceFAMS9sSX3NlABacs4tk4w5KWnNDSfWs8obNkd3U-8-xe_e5U5vY5_C-FJTPnYrIQQdKZioOsWck_N6n5qdSYMGoo-29GRLj7b00ZaGMUOnTB7Z8OXSX_P_oR_j62zF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Jiang, Bang Xin</creator><creator>Liu, Yang</creator><creator>Kou, Kit Ian</creator><creator>Wang, Zhen</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201101</creationdate><title>Controllability and Observability of Linear Quaternion-valued Systems</title><author>Jiang, Bang Xin ; Liu, Yang ; Kou, Kit Ian ; Wang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a7737d37a9bdce3b2782ab45e173f5d82fc375128444d3633e662c4a40df3bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Controllability</topic><topic>Duality theorem</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Observability (systems)</topic><topic>Quaternions</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Bang Xin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Kou, Kit Ian</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Bang Xin</au><au>Liu, Yang</au><au>Kou, Kit Ian</au><au>Wang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllability and Observability of Linear Quaternion-valued Systems</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>36</volume><issue>11</issue><spage>1299</spage><epage>1314</epage><pages>1299-1314</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or complex-valued linear systems, it is shown that the classical Caylay-Hamilton Theorem as well as Popov-Belevitch-Hautus (PBH) type controllability and observability test do not hold for linear QVS. Hence, a modified PBH type necessary condition is studied for the controllability and observability, respectively. Finally, some examples are given to illustrate the effectiveness of the obtained results.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-020-8167-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2020-11, Vol.36 (11), p.1299-1314 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_2473775552 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Controllability Duality theorem Linear systems Mathematics Mathematics and Statistics Observability (systems) Quaternions Stability |
title | Controllability and Observability of Linear Quaternion-valued Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllability%20and%20Observability%20of%20Linear%20Quaternion-valued%20Systems&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Jiang,%20Bang%20Xin&rft.date=2020-11-01&rft.volume=36&rft.issue=11&rft.spage=1299&rft.epage=1314&rft.pages=1299-1314&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-020-8167-1&rft_dat=%3Cproquest_cross%3E2473775552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473775552&rft_id=info:pmid/&rfr_iscdi=true |