Controllability and Observability of Linear Quaternion-valued Systems
The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or c...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2020-11, Vol.36 (11), p.1299-1314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems (QVS). Some criteria for controllability and observability are derived, and the minimum norm control and duality theorem are also investigated. Compared with real-valued or complex-valued linear systems, it is shown that the classical Caylay-Hamilton Theorem as well as Popov-Belevitch-Hautus (PBH) type controllability and observability test do not hold for linear QVS. Hence, a modified PBH type necessary condition is studied for the controllability and observability, respectively. Finally, some examples are given to illustrate the effectiveness of the obtained results. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-020-8167-1 |