Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines
For an arbitrary complex number a ≠ 0 we consider the distribution of values of the Riemann zeta-function ζ at the a -points of the function Δ which appears in the functional equation ζ ( s ) = Δ ( s ) ζ ( 1 - s ) . These a -points δ a are clustered around the critical line 1 / 2 + i R which happens...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2020-11, Vol.20 (3-4), p.389-401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an arbitrary complex number
a
≠
0
we consider the distribution of values of the Riemann zeta-function
ζ
at the
a
-points of the function
Δ
which appears in the functional equation
ζ
(
s
)
=
Δ
(
s
)
ζ
(
1
-
s
)
. These
a
-points
δ
a
are clustered around the critical line
1
/
2
+
i
R
which happens to be a Julia line for the essential singularity of
ζ
at infinity. We observe a remarkable average behaviour for the sequence of values
ζ
(
δ
a
)
. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-020-00316-x |