Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines

For an arbitrary complex number a ≠ 0 we consider the distribution of values of the Riemann zeta-function ζ at the a -points of the function Δ which appears in the functional equation ζ ( s ) = Δ ( s ) ζ ( 1 - s ) . These a -points δ a are clustered around the critical line 1 / 2 + i R which happens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2020-11, Vol.20 (3-4), p.389-401
Hauptverfasser: Steuding, Jörn, Suriajaya, Ade Irma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an arbitrary complex number a ≠ 0 we consider the distribution of values of the Riemann zeta-function ζ at the a -points of the function Δ which appears in the functional equation ζ ( s ) = Δ ( s ) ζ ( 1 - s ) . These a -points δ a are clustered around the critical line 1 / 2 + i R which happens to be a Julia line for the essential singularity of ζ at infinity. We observe a remarkable average behaviour for the sequence of values ζ ( δ a ) .
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-020-00316-x