Lumped Kinetic Modeling of Polypropylene and Polyethylene Co-Pyrolysis in Tubular Reactors

The recycling rates, especially those from plastic packaging waste, have to be increased according to the European Union directive in the next years. Besides many other technologies, the pyrolysis of plastic wastes seems to be an efficient supplementary opportunity to treat mixed and unpurified plas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-01, Vol.9 (1), p.34, Article 34
Hauptverfasser: Lechleitner, Andreas E., Schubert, Teresa, Hofer, Wolfgang, Lehner, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recycling rates, especially those from plastic packaging waste, have to be increased according to the European Union directive in the next years. Besides many other technologies, the pyrolysis of plastic wastes seems to be an efficient supplementary opportunity to treat mixed and unpurified plastic streams. For this reason, a pyrolysis process was developed for the chemical recycling of hydrocarbons from waste polyolefins. The obtained products can be further processed and upgraded in crude oil refineries, so that also monomers can be recovered, which are used for the plastic polymerization again. However, to achieve a scale up to a demo plant, a kinetic model for predicting the yields of the plastic pyrolysis in a tubular reactor is needed. For this reason, a pilot plant was built, in which different plastics and carrier fluids can be tested. Based on the data generated at the pilot plant, a very practical and suitable model was found to describe the plastic co-pyrolysis of the carrier fluid with polypropylene (PP) and low density and high density polyethylene (HDPE and LDPE), respectively. The physical and chemical mechanisms of the co-pyrolysis in the tubular reactor are successfully investigated.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9010034